Skip to main content
Log in

Obtainment of Aromatic Polyimide Nanofibers and Materials on Their Basis for Cell Technologies

  • Medical Polymers
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Nanofibers with a diameter of 100–300 nm are obtained by electroformation of solutions of polyamide acid based on 3,3′,4,4′-biphenyltetracarboxylic acid dianhydride and o-toluidine in an N,N-dimethylacetamide/ benzene solvent mixture. Thermal treatment of nanofibrous polyamide acid material leads to the formation of nanofibers of aromatic polyimide with a diameter of 100–200 nm. The temperature of the beginning of thermal decomposition of polyimide nanofibers in an argon atmosphere is 537°C. SEM images show that the material based on aromatic polyimide nanofibers preserves its elastic properties even at the temperature of liquid nitrogen. The obtained material is characterized by the absence of cytotoxicity: human fibroblasts cultivated on it are characterized by high proliferative activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polyimides: A Class of Thermally Stable Polymers, Ed. by M. I. Bessonov, M. M. Koton, V. V. Kudryavtsev, and L. A. Laius (Nauka, Leningrad, 1983) [in Russian].

    Google Scholar 

  2. R. Dine-Hart and W. Wright, J. Appl. Polym. Sci. 11 (5), 609 (1967).

    Article  CAS  Google Scholar 

  3. Y. Miao, G. Zhu, H. Hou, Y. Xia, and T. Liu, J. Power Sources 226, 82 (2013).

    Article  CAS  Google Scholar 

  4. G. Bader, R. Swaidan, E. Litwiller, and I. Pinnau, Adv. Mater. 22, 46 (2014).

    Google Scholar 

  5. O. D. Gendrikson, A. V. Zherdev, and B. B. Dzantie, Usp. Biol. Khim. 46, 149 (2006).

    Google Scholar 

  6. K. Lützow and T. Weigel, Artif. Organs 30 (10), 764 (2006).

    Article  PubMed  Google Scholar 

  7. N. Krastevaa, U. Harmsb, W. Albrecht, B. Seifert, M. Hopp, G. Altankov, and T. Groth, Biomaterials 23, 2467 (2002).

    Article  Google Scholar 

  8. G. Altankov, W. Albrecht, K. Richau, Th. Groth, and A. Lendlein, J. Biomater. Sci., Polym. Ed. 16, 23 (2005).

    Article  CAS  Google Scholar 

  9. I. P. Dobrovol’skaya, V. E. Yudin, P. V. Popryadukhin, and E. M. Ivankova, Polymer Matrices for Tissue Engineering (Izd. -poligraf. Assotsiatsiya Univ. Rossii, St. Petersburg, 2016) [in Russian].

    Google Scholar 

  10. S. L. Sampson, L. Saraiva, K. Gustafsson, S. N. Jayasinghe, and B. D. Robertson, Small 10 (1), 78 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, Biomaterials 24, 2077 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. T. Krishnamoorthy, T. Thavasi, G. M. Subodh, and S. Ramakrishna, Energy Environ. Sci. 4, 2807 (2011).

    Article  CAS  Google Scholar 

  13. X. Li, M. A. Kanjwal, L. Lin, and I. S. Chronakis, Colloids Surf., B 103, 182 (2013).

    Article  CAS  Google Scholar 

  14. J. D. Schiffman and C. L. Schauer, Polym. Rev. 48 (2), 317 (2008).

    Article  CAS  Google Scholar 

  15. A. I. Kol’tsov, N. G. Bel’nikevich, V. M. Denisov, L. N. Korzhavin, N. V. Mikhailova, and V. N. Nikitin, Vysokomol. Soedin. 16 (11), 2506 (1974).

    Google Scholar 

  16. US Patent No. 40581421 12/230 (2008).

  17. US Patent No. 44143305 12/899 (2010).

  18. US Patent No. 46199999 12/963 (2010).

  19. E. D. Shchukin, A. V. Pertsev, and E. A. Amelina, Colloid Chemistry (Vysshaya shkola, Moscow, 2006) [in Russian].

    Google Scholar 

  20. R. W. J. Masters, Animal Cell Culture (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  21. I. G. Silinskaya, V. P. Sklizkova, N. A. Kalinina, N. D. Kozhurnikova, A. P. Filippov, and V. V. Kudryavtsev, Polym. Sci., Ser. A 43 (4), 358 (2001).

    Google Scholar 

  22. I. G. Silinskaya, V. P. Sklizkova, N. A. Kalinina, N. D. Kozhurnikova, V. V. Koreneva, A. P. Filippov, and V. V. Kudryavtsev, Polim. Sci., Ser. A 45 (10), 1040 (2003).

    Google Scholar 

  23. I. G. Silinskaya, V. P. Sklizkova, N. A. Kalinina, N. D. Kozhurnikova, A. P. Filippov, and V. V. Kudryavtsev, Polim. Sci., Ser. A 48 (4), 444 (2006).

    Article  Google Scholar 

  24. G. I. Kudryavtsev, V. Ya. Varshavskii, A. M. Shchetinin, and M. E. Kazakov, Reinforcing Chemical Fibers for Composite Materials (Khimiya, Moscow, 1992) [in Russian].

    Google Scholar 

  25. G. V. Vinogradov and A. Ya. Malkin, Rheology of Polymers (Khimiya, Moscow, 1977) [in Russian].

    Google Scholar 

  26. Yu. N. Filatov, Electrospinning of Fibrous Materials (Neft’ i gaz, Moscow, 1997) [in Russian].

    Google Scholar 

  27. I. P. Dobrovolskaya, P. V. Popryadukhin, V. E. Yudin, E. M. Ivan’kova, V. Yu. Elokhovskiy, Z. Weishauptova, and K. Balik, J. Mater. Sci.: Mater. Med. 26, 46 (2015).

    Google Scholar 

  28. K. E. Perepelkin, Carbon-Chain Synthetic Fibers (Khimiya, Moscow, 1973) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Matrenichev.

Additional information

Original Russian Text © V.V. Matrenichev, P.V. Popryadukhin, V.P. Sklizkova, V.M. Svetlichnyi, A.E. Kryukov, N.V. Smirnova, E.M. Ivan’kova, E.N. Popova, I.P. Dobrovol’skaya, V.E. Yudin, 2018, published in Vysokomolekulyarnye Soedineniya, Seriya A, 2018, Vol. 60, No. 4, pp. 296–303.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matrenichev, V.V., Popryadukhin, P.V., Sklizkova, V.P. et al. Obtainment of Aromatic Polyimide Nanofibers and Materials on Their Basis for Cell Technologies. Polym. Sci. Ser. A 60, 483–490 (2018). https://doi.org/10.1134/S0965545X18040053

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X18040053

Navigation