Skip to main content
Log in

Synthesis and Properties of a Conducting Material Based on Hybrid Nanofibers of Aliphatic Copolyamide and Polypyrrole

  • POLYMER BLENDS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

The conducting film material intended for research in the field of cell technology is obtained on the basis of two biocompatible polymers—aliphatic copolyamide and polypyrrole. The material consists of hybrid nanofibers having the core–shell structure. The film is formed by copolyamide microfibers that are obtained by electrospinning and coated with a polypyrrole nanolayer. Studies show that the material is stable and does not change its characteristics when stored both in air and in aqueous media. The hybrid fiber film has a high porosity, good water wettability, and a sufficient level of stress–strain characteristics. The resistance of the material is 300–600 Ω/sq, which allows its use for the electrical stimulation of proliferative activity of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. G. Kaur, R. Adhikari, P. Cass, M. Bown, and P. Gunatillake, RSC Adv. 5, 37553 (2015).

  2. J. R. Smith and D. A. Lamprou, Trans. IMF 92, 9 (2014).

    Article  CAS  Google Scholar 

  3. J. Quirós, K. Boltes, and R. Rosal, Polym. Rev. 56, 631 (2016).

    Article  Google Scholar 

  4. M. P. Prabhakaran, L. Ghasemi-Mobarakeh, and S. Ramakrishna, J. Nanosci. Nanotechnol. 11, 3039 (2011).

    Article  CAS  Google Scholar 

  5. F. Sheikha, J. Macossaya, T. Cantua, X. Zhanga, M. S. Hassanc, M. E. Salinasa, C. S. Farhangia, H. Ahmada, H. Kimd, and G. L. Bowline, J. Mech. Behav. Biomed. Mater. 4, 189 (2015).

    Article  Google Scholar 

  6. S. Liu, J. Wang, D. Zhang, P. Zhang, J. Oua, B. Liu, and S. Yang, Appl. Surf. Sci. 256, 3427 (2010).

    Article  CAS  Google Scholar 

  7. V. Guarino, S. Zuppolini, A. Borriello, and L. Ambrosio, Polymers 8, 185 (2016).

    Article  Google Scholar 

  8. X. Wang, X. Gu, C. Yuan, S. Chen, P. Zhang, and T. Zhang, J. Biomed. Mater. Res., Part A 68, 411 (2004).

    Google Scholar 

  9. I. Yu. Sapurina, M. E. Kompan, A. G. Zabrodskii, J. Stejskal, and M. Trchova, Russ. J. Electrochem. 43, 528 (2007).

    Article  CAS  Google Scholar 

  10. C. Yang, X. Wang, Y. Wang, and P. Liu, Powder Technol. 217, 134 (2012).

    Article  CAS  Google Scholar 

  11. M. E. Abdelhamid, A. P. O’Mullane, and G. A. Snook, RSC Adv. 5, 11611 (2015).

  12. J. Rodriges, H. Grande, T. F. Otero, T. Trigaud, and J. P. Molion, Synth. Met. 83, 201 (1996).

    Article  Google Scholar 

  13. C. S. Park, C. Lee, and O. S. Kwon, Polymers 8, 249 (2016).

    Article  Google Scholar 

  14. T. F. Otero, J. G. Martinez, and J. Arias-Pardilla, Electrochim. Acta 84, 112 (2012).

    Article  CAS  Google Scholar 

  15. A.-D. Bendrea, L. Cianga, and I. Cianga, J. Biomater. Appl. 26, 3 (2011).

    Article  CAS  Google Scholar 

  16. L. Marquardt and S. E. Sakiyama-Elbert, Curr. Opin. Biotechnol. 24, 887 (2013).

    Article  CAS  Google Scholar 

  17. J. Xie, M. R. MacEwan, St. M. Willerth, X. Li, D. W. Moran, S. E. Sakiyama-Elbert, and Y. Xia, Adv. Funct. Mater. 19, 2312 (2009).

    Article  CAS  Google Scholar 

  18. V. Lundin, A. Herland, M. Berggren, E. W. H. Jager, and A. I. Teixeira, PLoS One 6, e18624 (2011).

    Article  CAS  Google Scholar 

  19. Z. Cui, B. Yang, and R.-K. Li, Engineering 2, 141 (2016).

    Article  CAS  Google Scholar 

  20. Z.-B. Huang, G.-F. Yin, X.-M. Liao, and J.-W. Gu, Front. Mater. Sci. 8, 39 (2014).

    Article  Google Scholar 

  21. D. L. Francisco, L. B. Paiva, and A. Wagner, Polym. Compos. 40, 851 (2019).

    Article  CAS  Google Scholar 

  22. I. P. Dobrovolskaya, P. V. Popryadukhin, V. E. Yudin, E. N. Dresvyanina, E. M. Ivan’kova, I. V. Gofman, and C. V. Kononova, Russ. J. Appl. Chem. 84, 1795 (2011).

    Article  CAS  Google Scholar 

  23. G. Kang, R. B. Borgens, and Y. Cho, Langmuir 27, 6179 (2011).

    Article  CAS  Google Scholar 

  24. I. P. Dobrovolskaya, I. O. Lebedeva, V. E. Yudin, P. V. Popryadukhin, E. M. Ivan’kova, and V. Yu. Elokhovskii, Polym. Sci., Ser. A 58, 246 (2016).

    Article  CAS  Google Scholar 

  25. I. P. Dobrovolskaya, P. V. Popryadukhin, P. V. Yudin, E. M. Ivan’kova, V. Yu. Elokhovskiy, Z. Weishauptova, and K. Balik, J. Mater. Sci.: Mater. Med. 26, 538 (2015).

    Google Scholar 

  26. V. V. Matrenichev, M. A. Shishov, and P. V. Popryadukhin, I. Yu. Sapurina, E. M. Ivan’kova, I. P. Dobrovolskaya, and V. E. Yudin, Russ. J. Appl. Chem. 90, 1680 (2017).

    Article  CAS  Google Scholar 

  27. P. V. Popryadukhin, G. I. Popov, I. P. Dobrovolskaya, and V. E. Yudin, Cardiovasc. Eng. Technol. 7, 78 (2015).

    Article  Google Scholar 

  28. M. Yanılmaz and S. A. Sezai, Text. Res. J. 84, 1325 (2014).

    Article  Google Scholar 

  29. I. S. Chronakis, S. Grapenson, and A. Jakob, Polymer 47, 1597 (2006).

    Article  CAS  Google Scholar 

  30. S. Sen, F. J. Davis, and G. R. Mitchell, J. Phys.: Conf. Ser. 183, 012020 (2009).

    Google Scholar 

  31. M. Yanilmaz, F. Kalaoglu, and H. Karakas, J. Appl. Polym. Sci. 125, 4100 (2012).

    Article  CAS  Google Scholar 

  32. B. Guo and P. X. Ma, Biomacromolecules 19, 1764 (2018).

    Article  CAS  Google Scholar 

  33. S. Nair, E. Hsiao, and S. H. Kim, J. Mater. Chem. 18, 5155 (2008).

    Article  CAS  Google Scholar 

  34. I. Sapurina, S. Fedorova, and J. Stejskal, Langmuir 19, 7413 (2003).

    Article  CAS  Google Scholar 

  35. J. Kopecka, D. Kopecky, M. Vrnata, P. Fitl, J. Stejskal, M. Trchova, P. Bober, Z. Moravkova, J. Prokes, and I. Sapurina, RSC Adv. 4, 1551 (2014).

  36. I. Sapurina, Y. Li, E. Alekseeva, P. Bober, M. Trchova, Z. Moravkova, and J. Stejskal, Polymer 113, 247 (2017).

    Article  CAS  Google Scholar 

  37. B. N. Tarasevich, Reference Materials. IR Spectra of Main Classes of Organic Compounds (MGU, Khim. Fakul’tet, Kafedra Org. Khim., Moscow, 2012) [in Russian].

  38. R. M. Silverstein, F. X. Webster, and D. J. Kiemle, Spectrometric Identification of Organic Compounds (Wiley, New Jersey, 2005).

    Google Scholar 

  39. M. A. Shougule, S. G. Pawara, P. R. Godsea, N. R. Mulika, S. Senb, and V. B. Putila, Soft Nanosci. Lett. 1, 6 (2011).

    Article  Google Scholar 

  40. J.-Y. Liu, C. Kou-Bing, J.-F. Hwang, J.-Y. Liu, C. Kou-Bing, J. F. Hwang, and M. H. Lee, J. Ind. Text. 41, 123 (2011).

    Article  CAS  Google Scholar 

  41. B. Hernández-Gascón, E. Peña, and H. Melero, Acta Biomater. 7, 3905 (2011).

    Article  Google Scholar 

  42. I. Sapurina, J. Stejskal, M. Spirkova, J. Kotek, and J. Prokes, Synth. Met. 151, 93 (2005).

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 19-73-30003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Sapurina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapurina, I.Y., Matrenichev, V.V., Vlasova, E.N. et al. Synthesis and Properties of a Conducting Material Based on Hybrid Nanofibers of Aliphatic Copolyamide and Polypyrrole. Polym. Sci. Ser. B 62, 116–124 (2020). https://doi.org/10.1134/S156009042001008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S156009042001008X

Navigation