Skip to main content
Log in

Study on conductivity and dielectric behavior of chemically synthesized polypyrrol dodecylbenzene sulfonic acid blended with poly(methyl methacrylate)

  • Polymer Blends
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Polypyrrole (PPy) doped with dodecylbenzene sulfonic acid was synthesized and was blended with compatible polymer PMMA in chloroform. Flexible and free-standing films with compositions PPy: PMMA = 10: 90, 20: 80, 30: 70, and 50: 50 were obtained. The percentage of crystallinity and particle size of synthesized polymers were estimated from X-rays diffraction studies. Scanning Electron Micrographs showed that phase separation was observed and compatibility of the mixture decreased with increase of PMMA content. The dielectric measurements were performed in the frequency range 0.1 kHz–1 MHz in temperature range 303–473 K. The frequency dependent conductivity (σac) obeyed a power law of frequency with an exponent s < 1. Electric modulus formalism exhibits a peak in frequency. The peak of conductivity relaxation shifted towards higher frequencies and the magnitude of relaxation decreased with the increase of PMMA content in the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. H. Sperling, Introduction to Physical Polymer Science (Wiley, New York, 2005).

    Book  Google Scholar 

  2. M. Campos, F. R. Simoes, and E. C. Pereira, Sensor Actuat. B-Chem. 125, 158 (2007).

    Article  CAS  Google Scholar 

  3. A. N. Aleshin, K. Lee, J. Y. Lee, D. Y. Kim, and C. Y. Kim, Synt. Met. 99, 27 (1999).

    Article  CAS  Google Scholar 

  4. Z. K. Abbas, S. J. Barton, P. J. S. Foot, and H. Morgan, Polymers and Polymer Composite. 15, 1 (2007).

    CAS  Google Scholar 

  5. N. Papathanassiou, I. Sakellis, J. Grammatikakis, E. Vitoratos, S. Sakkopoulos, and E. Dalas, Synt. Met. 142, 81 (2004).

    Article  CAS  Google Scholar 

  6. S. Yoshimoto, F. Ohashi, and T. Kameyama, Polym. Phys. 43, 2705 (2005).

    Article  CAS  Google Scholar 

  7. S. Yoshimoto, F. Ohashi, and T. Kameyama, Macromol. Rapid Commun. 25, 1687 (2004).

    Article  CAS  Google Scholar 

  8. G. M. D. Nascimento, C. H. B. Silva, and M. L. A. Temperini, Macromol. Rapid Commun. 27, 255 (2006).

    Article  Google Scholar 

  9. K. C. Yong, P. J. S. Foot, H. Morgan, S. Cook, and A. J. Tinker, Eur. Polym. J. 42, 1716 (2006).

    Article  CAS  Google Scholar 

  10. S. S. Ray, S. Pouliot, M. Bousmin, and L. A. Utracki, Polymer 45, 8403 (2004).

    Article  CAS  Google Scholar 

  11. H. Morgan and P. J. S. Foot, J. Mater. Sci. 36, 5369 (2001).

    Article  CAS  Google Scholar 

  12. D. A. Makeiff, T. Foster, and K. Foster, Technical Memorandum DRDC Atlantic TM 2004-301 (2005).

  13. A. Rudin, The Elements of Polymer Science and Engineering, (1st ed., Academic, 1982). Ch. 12, p. 437.

    Google Scholar 

  14. B. Das, S. Kumar, S. Chakraborty, D. Chakraborty, and S. Gangopadhyay, J. Appl. Polym. Sci. 69, 841 (1998).

    Article  CAS  Google Scholar 

  15. M. Ghosh, A. Barman, S. K. De, and S. Chatterjee, Solid State Commun. 103(11), 629 (1997).

    Article  CAS  Google Scholar 

  16. N. Bouzit, J. M. Forni’es-Marquina, A. Benhamouda, and N. Bourouba, Eur. Phys. J. Appl. Phys. 38, 147 (2007).

    Article  CAS  Google Scholar 

  17. A. Ahmad, M. Y. A. Rahman, M. S. Su’ait, and H. Hamzah, The Open Materials Science Journal 5, 170 (2011).

    Article  CAS  Google Scholar 

  18. S. Saravanan, C. J. Mathai, A. R. Anantharaman, S. Venkatachalam, and P. V. Prabhakaran, J. Phys. Chem. Solids 67, 1496 (2006).

    Article  CAS  Google Scholar 

  19. B. R. Manjunath, A. Venkataraman, and T. Stephen, J. Apply. Polym. Sci. 17, 109 (1973).

    Article  Google Scholar 

  20. R. Baskaran, S. Selvasekarapadian, N. Kuwata, J. Kawamura, and T. Hattori, Solid State Ionics 177(26–32), 2679 (2006).

    Article  CAS  Google Scholar 

  21. S. H. Mohamed, M. E. Hagary, and M. E. Ismail, J. Phys. D: Appl. Phys. 43, 075401 (2010).

    Article  Google Scholar 

  22. K. S. Jang, H. Lee, B. Moon, and C. Y. Kim, Synth. Met. 143, 289 (2004).

    Article  CAS  Google Scholar 

  23. S. Angappane, N. R. Kini, and T. S. Natarjan, Thin Solid Films 417, 202 (2002).

    Article  CAS  Google Scholar 

  24. A. Shakoor, P. J. S. Foot, and T. Z. Rizvi, J. Mater. Sci: Mater. Electron. 21, 1270 (2010).

    CAS  Google Scholar 

  25. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (2nd ed., Clarendon, Oxford, 1979). p. 225.

    Google Scholar 

  26. S. R. Elliott, Solid State Ionics 27, 131 (1988).

    Article  Google Scholar 

  27. P. Jeevananadam and S. Vasudevan, J. Chem. Phys. 109, 8102 (1999).

    Article  Google Scholar 

  28. S. S. Ata-Allah, J. Mater. Chem. Phys. 87, 378 (2004).

    Article  CAS  Google Scholar 

  29. S. R. Elliott, Adv. Phys. 36, 135 (1987).

    Article  CAS  Google Scholar 

  30. H. M. Abdelmoneim, Acta Physica Polonica A 117(6), 936 (2010).

    Article  CAS  Google Scholar 

  31. A. L. Efors, Philos. Mag. B 43, 829 (1981).

    Article  Google Scholar 

  32. K. L. Ngai and C. Leon, Solid State Ionics 195, 81 (1999).

    Article  Google Scholar 

  33. N. S. ingh, A. Agarwal, S. Sanghi, and S. Khasa, J. Magn. Magnt Mater. 324, 2506 (2012).

    Article  Google Scholar 

  34. M. Kaiser, Physica B 407, 606 (2012).

    Article  CAS  Google Scholar 

  35. A. Mdarhri, M. Khissi, M. E. Achour, and F. Carmona, Eur. Phys. J. Appl. Phys. 41, 215 (2008).

    Article  CAS  Google Scholar 

  36. S. A. Saafan, Physica B 403, 2049 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Elahi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elahi, A., Irfan, M., Munawar, M. et al. Study on conductivity and dielectric behavior of chemically synthesized polypyrrol dodecylbenzene sulfonic acid blended with poly(methyl methacrylate). Polym. Sci. Ser. A 58, 429–437 (2016). https://doi.org/10.1134/S0965545X16030068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X16030068

Keywords

Navigation