Skip to main content
Log in

Structure change and energy storage property of poly(vinylidene fluoride-hexafluoropropylene)/poly (methyl methacrylate) blends

  • Polymer Blends
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

In this work, in order to reduce the energy loss induced by the ferroelectric P(VDF-HFP) and improve energy storage property, a series of P(VDF-HFP)/PMMA blend films were prepared via biaxiallyoriented technology. The results showed that the ratio of alpha crystal continuously decreased with the addition of PMMA, the ratio of beta crystal firstly increased, followed by a reduction with further rising the PMMA percentage. Though gamma ratio was small, it enhances steadily. With the addition of PMMA, it could be found out the disorder in crystal structure, the reduction in crystal size, and the drop in crystallinity of P(VDF-HFP). The structure change improved the discharge efficiency and temperature stability. With the addition of PMMA, tanδ is enhanced more than 10°C, and the discharge energy efficiency improved from 45% of pure PVDF to 75% under 400 MV/m after modifying with PMMA. This improvement in the discharge energy efficiency is thought due to the formation of new crystal γ-2b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Sarjeant, J. Zirnheld, and F. W. MacDougall, IEEE Trans. Plasma Sci. 26, 1368 (1998).

    Article  CAS  Google Scholar 

  2. P. Kim, S. C. Jones, P. J. Hotchkiss, J. N. Haddock, B. Kippelen, S. R. Marder, J. W. Perry, Adv. Mater. 19, 1001 (2007).

    Article  CAS  Google Scholar 

  3. M. Rabuffi and G. Picci, IEEE Trans. Plasma Sci. 30, 1939 (2002).

    Article  CAS  Google Scholar 

  4. J. H. Tortai, N. Bonifaci, A. Denat, and C. Trassy, J. Appl. Phys. 97, 0533041 (2005).

    Article  Google Scholar 

  5. J. Starkweather, H. W. P. Avakian, R. R. Matheson, J. J. Fontanella, M. C. Wintersgill, Macromolecules 25, 6871 (1992).

    Article  CAS  Google Scholar 

  6. X. P. Yuan and T. C. Chung, Appl. Phys. Lett. 98, 062901 (2011).

    Article  Google Scholar 

  7. A. J. Lovinger, Science 220, 1115 (1983).

    Article  CAS  Google Scholar 

  8. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q. M. Zhang, Science 313, 334 (2006).

    Article  CAS  Google Scholar 

  9. T. Mizutani, T. Yamada, and M. Ieda, J. Phys. D: Appl. Phys. 14, 1139 (1981).

    Article  CAS  Google Scholar 

  10. Z. C. Zhang, T. C. Chung, Macromolecules 40, 783 (2007).

    Article  CAS  Google Scholar 

  11. X. Zhou, B. Chu, B. Neese, M. Lin, Q. M. Zhang, IEEE Trans. Dielectr. Electr. Insul. 14, 1133 (2007).

    Article  Google Scholar 

  12. X. Zhou, X. Zhao, Z. Suo, C. Zou, J. Runt, S. Liu, S. Zhang, Q. M. Zhang, Appl. Phys. Lett. 94, 162901 (2009).

    Article  Google Scholar 

  13. T. Nishi and T. T. Wang, Macromolecules 8, 909 (1975).

    Article  CAS  Google Scholar 

  14. M. A. Bachmann, W. L. Gordon, J. L. Koenig, J. B. Lando, J. Appl. Phys. 50, 6106 (1979).

    Article  CAS  Google Scholar 

  15. J. Li, S. Tan, S. Ding, H. Li, L. Yang, Z. Zhang, J. Mater. Chem. 22, 23468 (2012).

    Article  CAS  Google Scholar 

  16. Q. Meng, W. Li, Y. Zheng, and Z. Zhang. J. Appl. Polym. Sci. 116, 2674 (2010).

    CAS  Google Scholar 

  17. R. Gregorio and E. M. Ueno. J. Mater. Sci. 34, 4489 (1999).

    Article  CAS  Google Scholar 

  18. M. Remskar, I. Iskra, J. Jelenc, S. Davor Skapin, B. Visic, A. Varlec, A. Krzan, Soft Matter 9, 8647 (2013).

    Article  CAS  Google Scholar 

  19. N. Chen and L. Hong, Polymer 43, 1429 (2002).

    Article  CAS  Google Scholar 

  20. T. Yagi and M. Tatemoto, Polym. J. 11, 429 (1979).

    Article  CAS  Google Scholar 

  21. L. Zhu and Q. Wang, Macromolecules 45, 2937 (2012).

    Article  CAS  Google Scholar 

  22. R. L. Moreira, R. Almairac, and M. Latour, J. Phys. Condens. Matter. 1, 4273 (1989).

    Article  CAS  Google Scholar 

  23. S. Tan, X. Hu, S. Ding, Z. Zhang, H. Li, L. Yang, J. Mater. Chem. A 1, 10353 (2013).

    Article  CAS  Google Scholar 

  24. M. Rahimabady, S. Chen, K. Yao, F. E. Tay, L. Lu, Appl. Phys. Lett. 99, 142901 (2011).

    Article  Google Scholar 

  25. G. Peng, X. Zhao, Z. Zhan, S. Ci, Q. Wang, Y. Liang, M. Zhao. RSC Adv. 4, 16849 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guirong Peng.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Peng, G., Zhan, Z. et al. Structure change and energy storage property of poly(vinylidene fluoride-hexafluoropropylene)/poly (methyl methacrylate) blends. Polym. Sci. Ser. A 57, 452–459 (2015). https://doi.org/10.1134/S0965545X15040173

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X15040173

Keywords

Navigation