Skip to main content

Advertisement

Log in

Effect of crystalline phase on the dielectric and energy storage properties of poly(vinylidene fluoride)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The crystal structure shows great influence on dielectric and energy storage performance of poly(vinylidene fluoride) (PVDF) films. In this paper, a γ-phase PVDF film was fabricated by crystallization of PVDF from a DMF solution through a solution-casting method and a quenching treatment. The influences of crystalline phases on the dielectric and energy storage properties of the films were studied. It has been found that, compared with common α- and β-phase, the obtained γ-phase PVDF film presents much higher relative permittivity of about 9.8 in a 1 kHz electric field. The ferroelectric hysteresis loop investigation indicates that the γ-phase PVDF film exhibits much slimmer polarization–electric field hysteresis loops than α- and β-phase PVDF films and a high energy efficiency more than 72 % is obtained. This γ-phase PVDF film also shows low leakage current at high working voltage, which is more desirable and promising for high performance pulse discharge capacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Kawai, Jpn. J. Appl. Phys. 8(7), 975 (1969)

    Article  Google Scholar 

  2. J.G. Bergman, J.H. Mcfee, G.R. Crane, Appl. Phys. Lett. 18(5), 203–205 (1971)

    Article  Google Scholar 

  3. K. Tashiro, H. Tadokoro, M. Kobayashi, Ferroelectrics 32(1), 167–175 (1981)

    Article  Google Scholar 

  4. R.G. Kepler, R.A. Anderson, R.R. Lagasse, Ferroelectrics 57(1), 151–158 (1984)

    Article  Google Scholar 

  5. I.L. Guy, J. Unsworth, J. Appl. Phys. 61(12), 5374–5378 (1987)

    Article  Google Scholar 

  6. J. Li, Q. Meng, W. Li, Z. Zhang, J. Appl. Polym. Sci. 122(3), 1659–1668 (2011)

    Article  Google Scholar 

  7. R. Gregorio, M. Cestari, J. Polym. Sci., Part B: Polym. Phys. 32(5), 859–870 (1994)

    Article  Google Scholar 

  8. R.G. Jr, E.M. Ueno, J. Mater. Sci. 34(18), 4489–4500 (1999)

    Article  Google Scholar 

  9. T.C. Hsu, P.H. Geil, J. Mater. Sci. 24(4), 1219–1232 (1989)

    Article  Google Scholar 

  10. D. Song, D. Yang, Z. Feng, J. Mater. Sci. 25(1), 57–64 (1990)

    Article  Google Scholar 

  11. R. Gregorio, R.C. Capitão, J. Mater. Sci. 35(2), 299–306 (2000)

    Article  Google Scholar 

  12. O. Shigeyoshi, I. Yoichi, J. Polym. Sci. Polym. Phys. Ed. 13(6), 1071–1083 (1975)

    Article  Google Scholar 

  13. H. Mar, R.S. Stein, J. Polym. Sci., Part B: Polym. Phys. 27(5), 1089–1106 (1989)

    Article  Google Scholar 

  14. W. Li, Q. Meng, Y. Zheng, Z. Zhang, W. Xia, Z. Xu, Appl. Phys. Lett. 96(19), 192905-1–192905-3 (2010)

    Google Scholar 

  15. G. Rinaldo, J. Appl. Polym. Sci. 100(4), 3272–3279 (2006)

    Article  Google Scholar 

  16. G. Cortili, G. Zerbi, Spectrochim. Acta, Part A 23(2), 285–299 (1967)

    Article  Google Scholar 

  17. M. Kobayashi, K. Tashiro, H. Tadokoro, Macromolecules 8(2), 158–171 (1975)

    Article  Google Scholar 

  18. W.M. Prest, D.J. Luca, J. Appl. Phys. 46(10), 4136–4143 (1975)

    Article  Google Scholar 

  19. R.G. Jr, D.S. Borges, Polymer 49(18), 4009–4016 (2008)

    Article  Google Scholar 

  20. M. Benz, W.B. Euler, J. Appl. Polym. Sci. 89(4), 1093–1100 (2003)

    Article  Google Scholar 

  21. T. Boccaccio, A. Bottino, G. Capannelli, P. Piaggio, J. Membr. Sci. 210(2), 315–329 (2002)

    Article  Google Scholar 

  22. C.B. Sawyer, C.H. Tower, Phys. Rev. 35(3), 269–273 (1930)

    Article  Google Scholar 

  23. B.J. Chu, X. Zhou, K.L. Ren, B. Neese, M.R. Lin, Q. Wang, F. Bauer, Q.M. Zhang, Science 313(5785), 334–336 (2006)

    Article  Google Scholar 

  24. Z. Zhang, Q. Meng, T. Chung, Polymer 50(2), 707–715 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 51477026 and 61471085), the National Science Funds for Creative Research Groups of China (Grant No. 61421002) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Yang, W., Zhou, Y. et al. Effect of crystalline phase on the dielectric and energy storage properties of poly(vinylidene fluoride). J Mater Sci: Mater Electron 27, 7280–7286 (2016). https://doi.org/10.1007/s10854-016-4695-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4695-y

Keywords

Navigation