Skip to main content
Log in

A practical way to prepare thin polyaniline nanofibers with ferric nitrate as an oxidant

  • Functional Polymers
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

A practical approach to prepare thin fibrillar polyaniline was developed using ferric nitrate as an oxidant without any external dopants and templates. Doped polyaniline was directly obtained with iron (III) nitrate anion connected to imine atoms in the polyaniline backbone. The diameter and conductivity of the polyaniline nanofibers were 15∼28 nm and Ca. 10−1 S/cm, respectively and they were strongly affected by the molar ratio of ferric nitrate to aniline. The formation mechanism of the nanofibers was proposed to be aniline oligomerical micellar self-assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Lu, E. Smela, P. Adams, G. Zuccarello, and B. R. Mattes, Chem. Mater. 16, 1615 (2004).

    Article  CAS  Google Scholar 

  2. H. Yoon, M. Chang, and J. Jang, J. Phys. Chem. B 110, 14074 (2006).

    Article  CAS  Google Scholar 

  3. K. Wang, J. Y. Huang, and Z. X. Wei, J. Phys. Chem. C 14, 8062 (2010).

    Article  Google Scholar 

  4. G. R. Li, Z. P. Feng, J. H. Zhong, Z. L. Wang, and Y. X. Tong, Macromolecules 43, 2178 (2010).

    Article  CAS  Google Scholar 

  5. N. J. Pinto, A. T. Johnson, A. G. MacDiarmid, C. H. Mueller, N. Theylaktos, D. C. Robinson, and F. A. Miranda, Appl. Phys. Lett. 83, 4244 (2003).

    Article  CAS  Google Scholar 

  6. X. S. Du, C. F. Zhou, G. T. Wang, and Y. W. Mai, Chem. Mater. 20, 3806 (2008).

    Article  CAS  Google Scholar 

  7. J. Huang, S. Virji, B. H. Weiller, and R. B. Kaner, J. Am. Chem. Soc. 125, 314 (2003).

    Article  CAS  Google Scholar 

  8. X. Zhang, W. J. Goux, and S. K. Manohar, J. Am. Chem. Soc. 126, 4502 (2004).

    Article  CAS  Google Scholar 

  9. Q. W. Tang, J. H. Wu, X. M. Sun, Q. H. Li, J. M. Lin, and L. Q. Fan, Polymer 50, 752 (2009).

    Article  CAS  Google Scholar 

  10. N. R. Chiou and A. J. Epstein, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 17, 1679 (2005).

    Article  CAS  Google Scholar 

  11. J. Huang and R. B. Kaner, Angew. Chem., Int. Ed. Engl. 43, 5817 (2004).

    Article  CAS  Google Scholar 

  12. H. M. Zhang, X. H. Wang, J. Li, and F. S. Wang, Synth. Met. 159, 1508 (2009).

    Article  CAS  Google Scholar 

  13. G. C. Li, C. Q. Zhang, Y. M. Li, H. R. Peng, and K. Z. Chen, Polymer 51, 1934 (2010).

    Article  CAS  Google Scholar 

  14. C. G. Wu and T. Bein, Science (Washington, D. C.) 264, 1757 (1994).

    Article  CAS  Google Scholar 

  15. L. Xia, Z. X. Wei, and M. X. Wan, J. Colloid Interface Sci. 341, 1 (2010).

    Article  CAS  Google Scholar 

  16. P. Anilkumar and M. Jayakannan, Macromolecules 40, 7311 (2007).

    Article  CAS  Google Scholar 

  17. Z. X. Wei, Z. Zhang, and M. X. Wan, Langmuir 18, 917 (2002).

    Article  CAS  Google Scholar 

  18. Z. M. Zhang, J. Y. Deng, and M. X. Wan, Mater. Chem. Phys. 115, 275 (2009).

    Article  CAS  Google Scholar 

  19. H. J. Ding, Y. Z. Long, J. Y. Shen, and M. X. Wan, J. Phys. Chem. B 114, 115 (2010).

    Article  CAS  Google Scholar 

  20. T. Q. Wang, W. B. Zhong, X. T. Ning, Y. X. Wang, and W. T. Yang, J. Colloid Interface Sci. 334, 108 (2009).

    Article  CAS  Google Scholar 

  21. B. Folkesson, Acta Chem. Scand. 27, 287 (1973).

    Article  CAS  Google Scholar 

  22. Y. Zhu, G. Q. Ren, M. X. Wan, and L. Jiang, Macromol. Chem. Phys. 210, 2046 (2009).

    Article  CAS  Google Scholar 

  23. Z. M. Zhang, M. X. Wan, and Y. Wei, Adv. Funct. Mater. 16, 1100 (2006).

    Article  CAS  Google Scholar 

  24. J. Torres, C. C. Perry, S. J. Bransfield, and D. H. Fairbrother, J. Phys. Chem. B 107, 5558 (2003).

    Article  CAS  Google Scholar 

  25. R. V. Siriwardane, and J. M. Cook, J. Colloid Interface Sci. 108, 414 (1985).

    Article  CAS  Google Scholar 

  26. Q. X. Guo, C. Q. Yi, L. Zhu, Q. Yang, and Y. Xie, Polymer 46, 3185 (2005).

    Article  CAS  Google Scholar 

  27. M. A. Aramendia, V. Borau, C. Jimenez, J. M. Luque, J. M. Marinas, J. R. Ruiz, and F. J. Urbano, Appl. Catal. A 216, 257 (2001).

    Article  CAS  Google Scholar 

  28. Y. B. Moon, Y. Cao, P. Smith, and A. J. Heeger, Polym. Commun. 30, 196 (1989).

    CAS  Google Scholar 

  29. P. Anilkumar and M. Jayakannan, Macromolecules 41, 7706 (2008).

    Article  CAS  Google Scholar 

  30. H. M. Zhang, Y. P. Li, X. H. Wang, J. Li, and F. S. Wang, Polymer 52, 4246 (2011).

    Article  CAS  Google Scholar 

  31. H. J. Ding, M. X. Wan, and Y. Wei, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 19, 465 (2007).

    Article  CAS  Google Scholar 

  32. N. R. Chiou, L. J. Lee, and A. J. Epstein, Chem. Mater. 19, 3589 (2007).

    Article  CAS  Google Scholar 

  33. S. Harada, N. Fujita, and T. J. Sano, Am. Chem. Soc. 110, 8710 (1988).

    Article  CAS  Google Scholar 

  34. E.C. Venancio, P.C. Wang, and A.G. MacDiarmid, Synth. Met. 156, 357 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumei Zhang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Dou, C., Li, L. et al. A practical way to prepare thin polyaniline nanofibers with ferric nitrate as an oxidant. Polym. Sci. Ser. A 56, 146–151 (2014). https://doi.org/10.1134/S0965545X14020138

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X14020138

Keywords

Navigation