Skip to main content
Log in

Composite Nanofibers by Growing Polypyrrole on the Surface of Polyaniline Nanofibers Formed under Free Melting Condition and Shell-Thickness-Dependent Capacitive Properties

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

An efficient approach was presented to prepare polyaniline/polypyrrole (PANi/PPy) composite nanofibers by growing PPy layers on the surface of PANi nanofibrous seeds as electrode materials for supercapacitors in neutral electrolyte. Core layer of PANi nanofiber was firstly synthesized by the chemical oxidative polymerization of aniline monomers under free melting condition of reaction solutions in fully aqueous system without the assistance of any templates or organic solvents. Then the shell layer of PPy was fabricated by in-situ chemical oxidative polymerization of pyrrole monomers with the above-mentioned PANi nanofiber as a seed, and the PPy shell layer thicknesses were tuned by changing the molar ratio of aniline to pyrrole. The resulting PANi/PPy composites were investigated by field-emission scanning electron microscopy, ultraviolet-visible spectroscopy, Fourier transform infrared and Raman spectrometry. Furthermore, electrochemical behaviors in Na2SO4 electrolyte were tested by cyclic voltammetry, galvanostatic charge-discharge techniques and electrochemical impedance spectroscopy. It turned out that low molar ratio of aniline to pyrrole is helpful to increase the PPy shell layer thicknesses, yield and conductivity of PANi/PPy composite nanofibers. A great improvement on the capacitive properties could be achieved by choosing appropriate PPy shell layer thickness. The results showed that benefiting from strong synergy effect and π-π interaction between PANi core and PPy shell layer as well as low electrochemical impedance, PANi/PPy composite nanofibers prepared with the molar ratio of 1:1 (PPy shell layer thickness of about 12.5 nm) displayed the highest specific capacitance of 1550.2 F g−1 at scan rate of 5 mV s−1 and 758.8 F g−1 at the current density of 1 A g−1 with the best cycling stability of 70.3 % after 500 cycles in 0.5 M Na2SO4 electrolyte, which exhibited a great potential in the development of high-performance electrode materials operated in environmentally friendly electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. O. Baker, X. Huang, W. Nelson, and R. B. Kaner, Chem. Soc. Rev., 46, 1510 (2017).

    CAS  PubMed  Google Scholar 

  2. Q. Meng, K. Cai, Y. Chen, and L. Chen, Nano Energy, 36, 268 (2017).

    CAS  Google Scholar 

  3. R. Holze and Y. P. Wu, Electrochim. Acta, 122, 93 (2014).

    CAS  Google Scholar 

  4. K. Zhou, Y. He, Q. Xu, Q. Zhang, A. Zhou, Z. Lu, L. Yang, Y. Jiang, D. Ge, X. Liu, and H. Bai, ACS Nano, 12, 5888 (2018).

    CAS  PubMed  Google Scholar 

  5. H. W. Park, T. Kim, J. Huh, M. Kang, J. E. Lee, and H. Yoon, ACS Nano, 6, 7624 (2012).

    CAS  PubMed  Google Scholar 

  6. T. Li, Y. Zhou, B. Liang, D. Jin, N. Liu, Z. Qin, and M. Zhu, Electrochim. Acta, 249, 33 (2017).

    CAS  Google Scholar 

  7. M. Qiu, Y. Zhang, and B. Wen, J. Mater. Sci: Mater. El., 29, 10437 (2018).

    CAS  Google Scholar 

  8. H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, and S. Wang, J. Power Sources, 190, 578 (2009).

    CAS  Google Scholar 

  9. H. Zhang, Z. Qiang, S. Zhou, N. Liu, X. Wang, J. Li, and F. Wang, J. Power Sources, 196, 10484 (2011).

    CAS  Google Scholar 

  10. B. Liang, Z. Qin, J. Zhao, Y. Zhang, Z. Zhou, and Y. Lu, J. Mater. Chem. A, 2, 2129 (2014).

    CAS  Google Scholar 

  11. Y. Zhang, M. Qiu, Y. Yu, B. Wen, and L. Cheng, ACS Appl. Mater. Interfaces, 9, 809 (2016).

    PubMed  Google Scholar 

  12. S. Xing, G. Zhao, and Y. Yuan, Polym. Compos., 29, 22 (2008).

    CAS  Google Scholar 

  13. D. P. Dubal, S. V. Patil, G. S. Gund, and C. D. Lokhande, J. Alloy. Compd., 552, 240 (2013).

    CAS  Google Scholar 

  14. H. Mi, X. Zhang, X. Ye, and S. Yang, J. Power Sources, 176, 403 (2008).

    CAS  Google Scholar 

  15. J. Stejskal, P. Bober, M. Trchová, D. Nuzhnyy, V. Bovtun, M. Savinov, J. Petzelt, and J. Prokeš, Synth. Met., 224, 109 (2017).

    CAS  Google Scholar 

  16. Y. Zhang, Z. Yang, Y. Yu, B. Wen, Y. Liu, and M. Qiu, ACS Appl. Polym. Mater., 1, 737 (2019).

    CAS  Google Scholar 

  17. Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q. Xue, Y. Huang, and C. Zhi, Nano Energy, 22, 422 (2016).

    CAS  Google Scholar 

  18. T. Li, Y. Zhou, Z. J. Dou, L. Ding, S. Dong, N. Liu, and Z. Y. Qin, Electrochim. Acta, 243, 228 (2017).

    CAS  Google Scholar 

  19. X. Zhang and S. K. Manohar, J. Am. Chem. Soc., 126, 12714 (2004).

    CAS  PubMed  Google Scholar 

  20. Q. Wu, K. He, H. Mi, and X. Zhang, Mater. Chem. Phys., 101, 367 (2007).

    CAS  Google Scholar 

  21. S. Weng, J. Zhou, and Z. Lin, Synth. Met., 160, 1136 (2010).

    CAS  Google Scholar 

  22. W. Lei, P. He, S. Zhang, F. Dong, and Y. Ma, J. Power Sources, 266, 347 (2014).

    CAS  Google Scholar 

  23. J. Bo, X. Luo, H. Huang, L. Li, W. Lai, and X. Yu, J. Power Sources, 407, 105 (2018).

    CAS  Google Scholar 

  24. W. Zhang, H. Xiao, and S. Fu, Compos. Sci. Technol., 72, 1812 (2012).

    CAS  Google Scholar 

  25. J. Stejskal, Polym. Int., 67, 1461 (2018).

    CAS  Google Scholar 

  26. G. Li, C. Zhang, Y. Li, H. Peng, and K. Chen, Polymer, 51, 1934 (2010).

    CAS  Google Scholar 

  27. H. D. Tran, Y. Wang, J. M. D’Arcy, and R. B. Kaner, ACS Nano, 2, 1841 (2008).

    CAS  PubMed  Google Scholar 

  28. L. B. Jiang, X. Z. Yuan, J. Liang, J. Zhang, H. Wang, and G. M. Zeng, J. Power Sources, 331, 408 (2016).

    CAS  Google Scholar 

  29. Y. Xie, D. Wang, and J. Ji, Energy Technol., 4, 714 (2016).

    CAS  Google Scholar 

  30. M. Sk, C. Yue, and R. Jena, RSC Adv., 4, 5188 (2014).

    CAS  Google Scholar 

  31. D. Jin, Z. Qin, Y. Shen, T. Li, L. Ding, Y. Chen, and Y. Zhang, J. Solid State Electrochem., 22, 1227 (2017).

    Google Scholar 

  32. Y. Zhao, M. Arowo, W. Wu, and J. Chen, Langmuir, 31, 5155 (2015).

    CAS  PubMed  Google Scholar 

  33. W. Wu, D. Pan, Y. Li, G. Zhao, L. Jing, and S. Chen, Electrochim. Acta, 152, 126 (2015).

    CAS  Google Scholar 

  34. X. G. Li, A. Li, and M. R. Huang, Chem. Eur. J., 14, 10309 (2008).

    CAS  PubMed  Google Scholar 

  35. T. Li, Z. Qin, B. Liang, F. Tian, J. Zhao, N. Liu, and M. Zhu, Electrochim. Acta, 177, 343 (2015).

    CAS  Google Scholar 

  36. C. Li, L. Yang, Y. Meng, X. Hu, Z. Wei, P. Chen, and S. Zhou, RSC Adv., 3, 21315 (2013).

    CAS  Google Scholar 

  37. H. Xu, X. Li, and G. Wang, J. Power Sources, 294, 16 (2015).

    CAS  Google Scholar 

  38. Y. Ma, Y. Chen, A. Mei, M. Qiao, C. Hou, H. Zhang, and Q. Zhang, Chem. Asian J., 11, 93 (2015).

    PubMed  Google Scholar 

  39. K. He, C. Qin, Q. Wen, C. Wang, B. Wang, S. Yu, C. Hao, and K. Chen, J. Appl. Polym. Sci., 135, 6289 (2018).

    Google Scholar 

  40. Y. Zhao, H. Wei, M. Arowo, X. Yan, W. Wu, J. Chen, Y. Wang, and Z. Guo, Phys. Chem. Chem. Phys., 17, 1498 (2014).

    PubMed  Google Scholar 

  41. T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, and Y. Li, Nano Lett., 14, 2522 (2014).

    CAS  PubMed  Google Scholar 

  42. J. Oh, Y. K. Kim, J. S. Lee, and J. Jang, Nanoscale, 11, 6462 (2019).

    CAS  PubMed  Google Scholar 

  43. H. Guan, L. Z. Fan, H. Zhang, and X. Qu, Electrochim. Acta, 56, 964 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Key Scientific Research Program of Higher Education of Henan Province (20A430004) and the Doctoral Scientific Research Foundation of Henan University of Urban Construction (Q2018016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banglei Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, B., Zhao, Y., Guo, X. et al. Composite Nanofibers by Growing Polypyrrole on the Surface of Polyaniline Nanofibers Formed under Free Melting Condition and Shell-Thickness-Dependent Capacitive Properties. Fibers Polym 21, 1722–1732 (2020). https://doi.org/10.1007/s12221-020-1056-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-1056-5

Keywords

Navigation