Skip to main content
Log in

Analysis of local rearrangements in chains during simulation of the plastic deformation of glassy polymethylene

  • Theory and Simulation
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

A molecular-dynamics simulation of the low-temperature (∼100 K below T g) plastic deformation of glassy polymethylene (PM) was conducted. A model system consisting of 64 chains containing 100 CH2 groups (the united-atoms approach) in each computational cell with periodic boundary conditions was considered. The behavior of 32 such cells was considered. Each cell was subjected to an active isothermal uniaxial compression at a constant temperature of T def = 50 K to a strain of ɛ = 30%. An analysis showed that the inelastic deformation of glassy PM proceeded via nonaffine displacements (“gliding”) of chain fragments comprising 11–13 sites -CH2-. These displacements are correlated and directed mainly along chain axes. Only a small number of conformational rearrangements occur in chains during the deformation of the material. Conformational transitions add only small additional displacements to nonaffine atomic transformations. A free-volume analysis using Voronoi-Delaunay tessellation in the deformed polymer did not show its relation to local plastic rearrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Falk and C. E. Maloney, Eur. Phys. J. B 75, 405 (2010).

    Article  CAS  Google Scholar 

  2. L. Bertier, Physics 4, 42 (2011).

    Article  Google Scholar 

  3. R. Dasgupta, H. George, E. Hentschel, and I. Procaccia, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 87(022810) (2013).

    Google Scholar 

  4. V. Bulatov and A. Argon, Mod. Simul. Mater. Sci. Eng. 2, 203 (1994).

    Article  Google Scholar 

  5. A. Argon, Acta Metall. Mater. 27, 47 (1979).

    Article  CAS  Google Scholar 

  6. A. S. Argon and M. J. Demkowicz, Metall. Mater. Trans. A 39, 1762 (2008).

    Article  Google Scholar 

  7. D. R. Theodorou and U. W. Suter, Macromolecules 18, 1467 (1985).

    Article  CAS  Google Scholar 

  8. D. R. Theodorou and U. W. Suter, Macromolecules 19, 139 (1986).

    Article  CAS  Google Scholar 

  9. A. S. Argon, P. H. Mott, and U. W. Suter, Phys. Status Solidi B 172, 193 (1992).

    Article  CAS  Google Scholar 

  10. P. H. Mott, A. S. Argon, and U. W. Suter, Philos. Mag. A 67, 931 (1993).

    Article  CAS  Google Scholar 

  11. M. Hutnik, A. S. Argon, and U. W. Suter, Macromolecules 26, 1097 (1993).

    Article  CAS  Google Scholar 

  12. D. R. Theodorou and U. W. Suter, Macromolecules 19, 379 (1986).

    Article  CAS  Google Scholar 

  13. F. M. Capaldi, M. C. Boyce, and G. C. Rutledge, Phys. Rev. Lett. 89 (175505) (2002).

  14. F. M. Capaldi, M. C. Boyce, and G. C. Rutledge, Polymer 45, 1391 (2004).

    Article  CAS  Google Scholar 

  15. N. K. Balabaev, M. A. Mazo, A. V. Lyulin, and E. F. Oleinik, Polym. Sci. A 52, 633 (2010).

    Article  Google Scholar 

  16. E. A. Zubova, A. I. Musienko, N. K. Balabaev, E. B. Gusarova, M. A. Mazo, L. I. Manevich, and Al. Al. Berlin, Dokl. Phys. Chem. 418, 15 (2008).

    Article  CAS  Google Scholar 

  17. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).

    Google Scholar 

  18. A. S. Lemak and N. K. Balabaev, J. Comput. Chem. 17, 1685 (1996).

    Article  CAS  Google Scholar 

  19. H. J. C. Berendsen, J. P. M. Postma, W. F. Gunsteren, A. Di Nola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984).

    Article  CAS  Google Scholar 

  20. J. Perez, Physics and Mechanics of Amorphous Polymers (Balkema, Rotterdam, 1998).

    Google Scholar 

  21. E. Oleinik, in High Performance Polymers, Ed by E. Baer and S. Moet (Hanser, Munich, 1990), p. 60.

  22. A. V. Lyulin, B. Vorselaars, M. A. Mazo, N. K. Balabaev, and M. A. J. Michels, Europhys. Lett. 71, 618 (2005).

    Article  CAS  Google Scholar 

  23. D. L. White, Polyethylene, Polypropylene and Other Polyolefins (Professiya, St. Petersburg, 2006) [in Russian].

    Google Scholar 

  24. S. Lee and G. C. Rutledge, Macromolecules 44, 3096 (2011).

    Article  CAS  Google Scholar 

  25. D. Hossain, M. A. Tschopp, D. K. Ward, J. L. Bouvard, P. Wang, and M. F. Horstemeyer, Polymer 51, 6071 (2010).

    Article  CAS  Google Scholar 

  26. M. L. Falk and J. S. Langer, Annu. Rev. Condens. Matter Phys. 2, 353 (2011).

    Article  CAS  Google Scholar 

  27. M. L. Falk and J. S. Langer, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 57, 7192 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mazo.

Additional information

Original Russian Text © I.A. Strelnikov, N.K. Balabaev, M.A. Mazo, E.F. Oleinik, 2014, published in Vysokomolekulyarnye Soedineniya. Ser. A, 2014, Vol. 56, No. 2, pp. 222–231.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strelnikov, I.A., Balabaev, N.K., Mazo, M.A. et al. Analysis of local rearrangements in chains during simulation of the plastic deformation of glassy polymethylene. Polym. Sci. Ser. A 56, 219–227 (2014). https://doi.org/10.1134/S0965545X14010088

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X14010088

Keywords

Navigation