Skip to main content
Log in

Effects of different loading methods in molecular dynamics on deformation behavior of polymer crystals

  • Research
  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Thermoplastics have a crystal structure. It has been pointed out that the crystalline structure affects viscoelastic behavior in crystalline polymers, which must be taken into account in MD simulations. In this study the crystalline lamellar structure of Polyethylene (PE) was reproduced via molecular dynamics. To investigate the mechanical behavior and deformation behavior of the lamellar structure of PE, deformation was applied to the model under a constant tensile rate and constant tensile load as tensile and creep analyses, respectively. A tensile analysis indicated localized cracking, and a creep analysis revealed molecular-chain undulation along the tensile direction. To clarify the reason for the difference in deformation distribution between tensile and creep analyses, the potential energy during tensile loading was examined. In the tensile analysis, all the potential energies increased at the start of tension development and decreased rapidly at the break. As revealed in the creep analysis, the bond stretching and bond angle potential energies did not change when deformation started at a strain of approximately 0.20. These results indicated that the deformation behavior depended on the loading configuration, such as tensile and creep loading, and that deformation behaviors vary because of differences in displacement distribution and potential energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahzi, S., Makradi, A., Gregory, R.V., et al.: Modeling of deformation behavior and strain-induced crystallization in poly(ethylene terephthalate) above the glass transition temperature. Mech. Mater. 35(12), 1139–1148 (2003)

    Article  Google Scholar 

  • Ayoub, G., Zaïri, F., Fréderix, C., et al.: Effects of crystal content on the mechanical behaviour of polyethylene under finite strains: experiments and constitutive modelling. Int. J. Plast. 27(4), 492–511 (2011)

    Article  MATH  Google Scholar 

  • Berendsen, H.J.C. van der Spoel, D., van Drunen, R.: GROMACS: a message-passing parallel molecular dynamics implementation. Commun. Comput. Phys. 91(1–3), 43–56 (1995)

    Article  Google Scholar 

  • Boey, F.Y.C., Lee, T.H., Khor, K.A.: Polymer crystallinity and its effect on the non-linear bending creep rate for a polyphenylene sulphide thermoplastic composite. Polym. Test. 14(5), 425–438 (1995)

    Article  Google Scholar 

  • Bowman, A.L., Mun, S., Nouranian, S., et al.: Free volume and internal structural evolution during creep in model amorphous polyethylene by molecular dynamics simulations. Polymer 170, 85–100 (2019)

    Article  Google Scholar 

  • Capaldi, F.M., Boyce, M.C., Rutledge, G.C.: Enhanced mobility accompanies the active deformation of a glassy amorphous polymer. Phys. Rev. Lett. 89(17), 175505 (2002)

    Article  Google Scholar 

  • Dusunceli, N., Colak, O.U.: Modelling effects of degree of crystallinity on mechanical behavior of semicrystalline polymers. Int. J. Plast. 24(7), 1224–1242 (2008)

    Article  MATH  Google Scholar 

  • Felder, S., Vu, N.A., Reese, S., et al.: Modeling the effect of temperature and degree of crystallinity on the mechanical response of Polyamide 6. Mech. Mater. 148, 103476 (2020)

    Article  Google Scholar 

  • Fukushima, R., Yamada, Y., Kageyama, K., et al.: Effect of heat treatment on mechanical properties of carbon-fiber-reinforced thermoplastic. Adv. Compos. Mater. 30(6), 527–543 (2021)

    Article  Google Scholar 

  • Galeski, A.: Strength and toughness of crystalline polymer systems. Prog. Polym. Sci. 28(12), 1643–1699 (2003)

    Article  Google Scholar 

  • Higuchi, Y.: Stress Transmitters at the molecular level in the deformation and fracture processes of the lamellar structure of polyethylene via coarse-grained molecular dynamics simulations. Macromolecules 52, 6201–6212 (2019)

    Article  Google Scholar 

  • Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695–1697 (1985)

    Article  Google Scholar 

  • Hossain, D., Tschopp, M.A., Ward, D.K., et al.: Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer 51(25), 6071–6083 (2010)

    Article  Google Scholar 

  • Ikeshima, D., Nishimori, F., Yonezu, A.: Deformation modeling of polyamide 6 and the effect of water content using molecular dynamics simulation. J. Polym. Res. 26(6), 1–11 (2019)

    Article  Google Scholar 

  • In-Chul, Y., Andzelm, J.W., Rutledge, G.C.: Mechanical and structural characterization of semicrystalline polyethylene under tensile deformation by molecular dynamics simulations. Macromolecules 48(12), 4228–4239 (2015)

    Article  Google Scholar 

  • In-Chul, Y., Lenhart, J.L., Rutledge, G.C., et al.: Molecular dynamics simulation of the effects of layer thickness and chain tilt on tensile deformation mechanisms of semicrystalline polyethylene. Macromolecules 50(4), 1700–1712 (2017)

    Article  Google Scholar 

  • Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J., Chem, J.A.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Società 118, 11225 (1996)

    Google Scholar 

  • Khare, K.S., Phelan, F.R. Jr.: Integration of atomistic simulation with experiment using time-temperature superposition for a cross-linked epoxy network. Macromol. Theory Simul. 29(2), 1900032 (2020)

    Article  Google Scholar 

  • Kohji, T.: Molecular theory of mechanical properties oh crystalline polymers. Prog. Polym. Sci. 18(3), 377–435 (1993)

    Article  Google Scholar 

  • Kong, Y., Hay, J.N.: The measurement of the crystallinity of polymers by DSC. Polymer 43(14), 3873–3878 (2002)

    Article  Google Scholar 

  • Koyanagi, J., Takase, N., Mori, K., Sakai, T.: Molecular dynamics simulation for the quantitative prediction of experimental tensile strength of a polymer material. Composites, Part C 2, 100041 (2020)

    Google Scholar 

  • Liu, J., Cao, D., Zhang, L., et al.: Time-temperature and time-concentration superposition of nanofilled elastomers: a molecular dynamics study. Macromolecules 42(7), 2831–2842 (2009)

    Article  Google Scholar 

  • Mahajan, D.K., Singh, B., Basu, S.: Void nucleation and disentanglement in glassy amorphous polymers. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 82(1 Pt 1), 011803 (2010)

    Article  Google Scholar 

  • Moyassari, A., Gkourmpis, T., Hedenqvist, M.S., et al.: Molecular dynamics simulations of short-chain branched bimodal polyethylene: topological characteristics and mechanical behavior. Macromolecules 52(3), 807–818 (2018)

    Article  Google Scholar 

  • Moyassari, A., Gkourmpis, T., Hedenqvist, M.S., et al.: Molecular dynamics simulation of linear polyethylene blends: effect of molar mass bimodality on topological characteristics and mechanical behavior. Polymer 161(14), 139–150 (2019)

    Article  Google Scholar 

  • Moyassari, A., Gkourmpis, T., Hedenqvist, M.S., Gedde, U.W.: Molecular dynamics simulation of linear polyethylene blends: effect of molar mass bimodality on topological characteristics and mechanical behavior. Polymer 161, 139–150 (2019)

    Article  Google Scholar 

  • Nitta, K.: A molecular theory of stress–strain relationship of spherulitic materials. Comput. Theor. Polymer Sci. 9(1), 19–26 (1999)

    Article  Google Scholar 

  • Nitta, K.-H., Nomura, H.: Stress–strain behavior of cold-drawn isotactic polypropylene subjected to various drawn histories. Polymer 55, 6614–6622 (2014)

    Article  Google Scholar 

  • Nosé, S.: A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81(1), 511–519 (1984)

    Article  Google Scholar 

  • O’Connor, T.C., Robbins, M.O.: Chain ends and the ultimate strength of polyethylene fibers. ACS Macro Lett. 5(3), 263–267 (2016)

    Article  Google Scholar 

  • Pan, Y., Gao, X., Lei, J., et al.: Effect of different morphologies on the creep behavior of high-density polyethylene. RSC Adv. 6(5), 3470–3479 (2016)

    Article  Google Scholar 

  • Parenteau, T., Ausias, G., Grohens, Y., et al.: Structure, mechanical properties and modelling of polypropylene for different degrees of crystallinity. Polymer 53(25), 5873–5884 (2012)

    Article  Google Scholar 

  • Rahman, M., Parrinello, A.: Crystal structure and pair potentials: a molecular-dynamics study. Phys. Rev. Lett. 45(14), 1196–1199 (1980)

    Article  Google Scholar 

  • Sakai, T., Somiya, S.: Analysis of creep behavior in thermoplastics based on visco-elastic theory. Mech. Time-Depend. Mater. 15(3), 293–308 (2011)

    Article  Google Scholar 

  • Sakai, T., Hirai, Y., Somiya, S.: Estimating the creep behavior of glass-fiber-reinforced polyamide considering the effects of crystallinity and fiber volume fraction. Mech. Adv. Mater. Mod. Process. 4(1), 1–9 (2018)

    Article  Google Scholar 

  • Sakai, T., Shamsudim, N.S.B., Fukushima, R., et al.: Effect of matrix crystallinity of carbon fiber reinforced polyamide 6 on static bending properties. Adv. Compos. Mater. 30(sup2):71–84 (2021)

    Article  Google Scholar 

  • Shang, Y., Zhang, X., Xu, H., et al.: Microscopic study of structure/property interrelation of amorphous polymers during uniaxial deformation: a molecular dynamics approach. Polymer 77, 254–265 (2015)

    Article  Google Scholar 

  • Somiya, S., Yamada, K., Sakai, T.: Bending creep deformation of glass fiber reinforced polyoxymethylene. Innovative Developments Characterizations and Applications of Composites, 239–249 (2006)

  • Tábi, T., Hajba, S., Kovács, J.G.: Effect of crystalline forms (\(\alpha '\) and \(\alpha \)) of poly(lactic acid) on its mechanical, thermo-mechanical, heat deflection temperature and creep properties. Eur. Polym. J. 82, 232–243 (2016)

    Article  Google Scholar 

  • Um, H.-J., Hwang, Y.-T., Choi, K.H., et al.: Effect of crystallinity on the mechanical behavior of carbon fiber reinforced polyethylene-terephthalate (CF/PET) composites considering temperature conditions. Compos. Sci. Technol. 207(3), 108745 (2021)

    Article  Google Scholar 

  • Vu-Bac, N., Lahmer, T., Keitel, H., et al.: Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mech. Mater. 68, 70–84 (2014)

    Article  Google Scholar 

  • Yeh, I.C., Balzano, L., Harm van der Werff, R.A., et al.: Effects of finite lengths of chains on the structural and mechanical properties of polyethylene fibers. Macromolecules 53(1), 18–28 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (Grant Numbers JP19KK0363 and JP21H01221).

Author information

Authors and Affiliations

Authors

Contributions

Yoshida analyze every data, Sakai and Kageyama supervised Yoshida, and Yoshida and Sakai wrote the main manuscript text and prepared every figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Takenobu Sakai.

Ethics declarations

Ethical approval

The work described in the paper has not been published before. It is not under consideration for publication elsewhere, and the publication has been approved by all coauthors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, K., Kageyama, K. & Sakai, T. Effects of different loading methods in molecular dynamics on deformation behavior of polymer crystals. Mech Time-Depend Mater (2023). https://doi.org/10.1007/s11043-023-09641-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11043-023-09641-9

Keywords

Navigation