Skip to main content
Log in

Effect of the supporting pattern on the orientation of hexagonal morphology in thin films of diblock copolymers

  • Theory and Modeling
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The model of a thin film sandwiched between two parallel planes the gap between which is filled with the melt of diblock copolymers is revisited. One of the planes (a supporting plane) has a pattern, whereas the other plane (an upper) is uniform. The proposed model is based on mean self-consistent field concepts. The parameters of diblock copolymers are selected so that the melt of diblock copolymers yields a hexagonal morphology in its volume. The upper boundary of the film and support avoid contact with the minor component of the diblock copolymer; as a result, in the film, a hexagonal morphology parallel to the support is formed. When hexagonal and rectangular patterns with preferential interaction with the minor component (the period of patterns coincides with the period of hexagonal symmetry in the volume), the hexagonal morphology changes its orientation from parallel to perpendicular relative to the support. The hexagonal morphology changes its orientation at sufficiently strong interaction between the pattern and minor component. Structural factor is calculated, and characteristic features in the location of peaks for perpendicular and parallel phases of hexagonal morphology are found. The development of additional peaks in the structural factor comes from deformations induced by the interaction between components of the melt of diblock copolymers with the upper boundary, support, and pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Leibler, Macromolecules 13, 1602 (1980).

    Article  CAS  Google Scholar 

  2. F. S. Bates and G. H. Fredrickson, Annu. Rev. Phys. Chem. 41, 525 (1990).

    Article  CAS  Google Scholar 

  3. K. Binder, Computational Modeling of Polymers (Springer, New York, 1992).

    Google Scholar 

  4. I. Ya. Erukhimovich and A. R. Khokhlov, Polymer Science, Ser. A 35 (1993) [Vysokomol. Soedin., Ser. A 35, 1808 (1993)].

  5. M. W. Matsen and M. Schick, Macromolecules 27, 6761 (1994).

    Article  CAS  Google Scholar 

  6. S. Bates and G. H. Fredrickson, Phys. Today 33(52), 32 (1999).

    Article  Google Scholar 

  7. H. D. Ceniceros and G. H. Fredrickson, Multiscale Model. Simul. 2, 452 (2004).

    Article  CAS  Google Scholar 

  8. G. H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford Univ. Press, New York, 2006).

    Google Scholar 

  9. Yu. A. Kriksin, I. Ya. Erukhimovich, P. G. Khalatur, et al., J. Chem. Phys. 128, 244903 (2008).

    Article  Google Scholar 

  10. Yu. A. Kriksin, P. G. Khalatur, I. Ya. Erukhimovich, et al., Soft Matter, No. 5, 2896 (2009).

  11. A. Alexander-Katz, A. G. Moreira, and G. H. Fredrickson, J. Chem. Phys. 118, 9030 (2003).

    Article  CAS  Google Scholar 

  12. M. W. Matsen, J. Chem. Phys. 108, 7781 (1997).

    Article  Google Scholar 

  13. H. P. Huinink, J. C. M. Brokken-Zijp, and M. A. Van Dijk, J. Chem. Phys. 112, 2452 (2000).

    Article  CAS  Google Scholar 

  14. H. Yi. Chen and G. H. Fredrickson, J. Chem. Phys. 116, 1137 (2002).

    Article  CAS  Google Scholar 

  15. D. Meng and Q. Wang, J. Chem. Phys. 126, 234902 (2007).

    Article  Google Scholar 

  16. A. K. Chakraborty and A. J. Golumbfskie, Annu. Rev. Phys. Chem. 52, 537 (2001).

    Article  CAS  Google Scholar 

  17. K. Ch. Daoulas, M. Müller, J. J. De Pablo, et al., Soft Matter, No. 2, 573 (2006).

  18. T. L. Morkved, M. Lu, A. M. Urbas, et al., Science (Washington, D. C.) 273, 931 (1996).

    Article  CAS  Google Scholar 

  19. G. Coulon, T. P. Russell, V. R. Deline, and P. F. Green, Macromolecules 22, 2581 (1989).

    Article  CAS  Google Scholar 

  20. S. H. Anastasiadis, T. P. Russell, S. K. Satija, and S. F. Majkrzak, J. Chem. Phys. 92, 5677 (1990).

    Article  CAS  Google Scholar 

  21. B. L. Carvalho and E. L. Thomas, Phys. Rev. Lett. 73, 3321 (1994).

    Article  CAS  Google Scholar 

  22. K. S. Lyakhova, A. Horvat, A. V. Zvelindovsky, and G. J. A. Sevink, Langmuir 22, 5848 (2006).

    Article  CAS  Google Scholar 

  23. L. Tsarkova, A. Knoll, and R. Magerle, Nano Lett. 6, 1574 (2006).

    Article  CAS  Google Scholar 

  24. A. Knoll, L. Tsarkova, and G. Krausch, Nano Lett. 7, 843 (2007).

    Article  CAS  Google Scholar 

  25. A. Horvat, A. Knoll, G. Krausch, et al., Macromolecules 40, 6930 (2007).

    Article  CAS  Google Scholar 

  26. T. Xu, J. Hawker, and T. P. Russel, Macromolecules 36, 6178 (2003).

    Article  CAS  Google Scholar 

  27. T. Thurn-Albrecht, J. DeRouchey, T. P. Russell, and R. Kolb, Macromolecules 35, 8106 (2002).

    Article  CAS  Google Scholar 

  28. T. Xu, A. V. Zvelindovsky, G. J. A. Sevink, et al., Macromolecules 38, 10788 (2005).

    Article  CAS  Google Scholar 

  29. M. W. Matsen, Macromolecules 39, 5512 (2006).

    Article  CAS  Google Scholar 

  30. R. Ruiz, H. Kang, F. A. Detcheverry, et al., Science (Washington, D. C.) 321, 936 (2008).

    Article  CAS  Google Scholar 

  31. I. Bita, J. K. W. Yang, Y. S. Jung, et al., Science (Washington, D. C.) 321, 939 (2008).

    Article  CAS  Google Scholar 

  32. Ch. Tang, E. M. Lennon, G. H. Fredrickson, et al., Science (Washington, D. C.) 322, 429 (2008).

    Article  CAS  Google Scholar 

  33. S. Xiao, X. Yang, S. Park, et al., Adv. Mater. (Weinheim, Fed. Repub. Ger.) 21, 2516 (2009).

    Article  CAS  Google Scholar 

  34. E. Yu. Kramarenko, I. I. Potemkin, A. R. Khokhlov, et al., Macromolecules 32, 3495 (1999).

    Article  CAS  Google Scholar 

  35. E. Yu. Kramarenko, P. G. Khalatur, I. I. Potemkin, and A. R. Khokhlov, Macromolecules 33, 150 (2000).

    Article  Google Scholar 

  36. M. J. Fasolka and A. M. Mayes, Annu. Rev. Mater. Res. 31, 323 (2001).

    Article  CAS  Google Scholar 

  37. Y. Tsori and D. Andelman, Macromolecules 34, 2719 (2001).

    Article  CAS  Google Scholar 

  38. Y. Tsori and D. Andelman, Europhys. Lett. 53, 722 (2001).

    Article  CAS  Google Scholar 

  39. I. I. Potemkin and M. Möller, Macromolecules 38, 2999 (2005).

    Article  CAS  Google Scholar 

  40. D. Petera and M. Muthukumar, Chem. Phys. 109, 5101 (1998).

    CAS  Google Scholar 

  41. M. Birkholz, P. F. Fewster, and C. Genzel, Thin Film Analysis by X-Ray Scattering (Wiley, Weinheim, 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Kriksin.

Additional information

Original Russian Text © Yu.A. Kriksin, P.G. Khalatur, A.R. Khokhlov, 2010, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2010, Vol. 52, No. 6, pp. 982–992.

This work was supported by the Russian Foundation for Basic Research, project no. 10-03-00763, and DFG, SFB 569, project B13.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kriksin, Y.A., Khalatur, P.G. & Khokhlov, A.R. Effect of the supporting pattern on the orientation of hexagonal morphology in thin films of diblock copolymers. Polym. Sci. Ser. A 52, 645–654 (2010). https://doi.org/10.1134/S0965545X10060118

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X10060118

Keywords

Navigation