Skip to main content
Log in

Comparison of micromechanical models for the prediction of the effective elastic properties of semicrystalline polymers: Application to polyethylene

  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

In this paper, we discuss the application of different micromechanical composite models to compute the effective elastic properties of semicrystalline polymers. The morphology of these two-phase materials consists of crystalline lamellae and amorphous domains which may form a spherulitic microstructure. The selected models are the Mori-Tanaka type models, the Double-Inclusion models, and the Self-Consistent models. We applied these composite estimates to both fully isotropic and transverse isotropic transcrystalline polyethylene. The results from these different models are compared to the experimental results for different crystallinities. The Generalized Mori-Tanaka (GMT) model and the Self-Consistent Composite-Inclusion (SCCI) model give the best predictions of the effective elastic constants compared to the other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Ward, Proc. Phys. Soc. London, Sect. A 80, 1176 (1962).

    CAS  Google Scholar 

  2. M. Takanayagi, K. Imada, and T. Kajiyama, J. Polym. Sci. 58, 283 (1966).

    Google Scholar 

  3. S. Ahzi, D. M. Parks, and A. S. Argon, in Current Research in the Thermomechanics of Polymers in the Rubbery-Glassy Range. (ASME, AMD 203), p. 31.

  4. S. Ahzi, N. Bahlouli, A. Makradi, and S. Belouettar, J. Mech. Mater. Struct. 2007 (in press).

    Google Scholar 

  5. X. Guan and R. Pitchumani, Polym. Eng. Sci. 44, 433 (2004).

    Article  CAS  Google Scholar 

  6. L. J. Walpole, J. Mech. Phys. Solids 14, 289 (1966).

    Article  CAS  Google Scholar 

  7. S. Nemat-Nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials (Elsevier, Amsterdam, 1999).

    Google Scholar 

  8. T. Mori and K. Tanaka, Acta Metall. 21, 571 (1973).

    Article  Google Scholar 

  9. Y. Benveniste, Mech. Mater. 6, 147 (1987).

    Article  Google Scholar 

  10. M. Hori and S. Nemat-Nasser, Mech. Mater. 14, 189 (1993).

    Article  Google Scholar 

  11. P. Ponte Castaneda and J. R. Willis, J. Mech. Phys. Solids 43, 1919 (1995).

    Article  Google Scholar 

  12. R. W. Gray and N. G. McCrum, J. Polym. Sci., Part A-2 7, 1329 (1969).

    Article  CAS  Google Scholar 

  13. M. M. Zehnder, A. A. Gusev, and U. W. Suter, Rev. Inst. Fr. Pét. 51, 131 (1996).

    CAS  Google Scholar 

  14. M. De Langen, H. Luigjes, and K. O. Prins, Polymer 41, 1183 (2000).

    Article  Google Scholar 

  15. J. D. Eshelby, Proc. R. Soc. London, A 241, 376 (1957).

    Article  Google Scholar 

  16. W. Voigt, Lehrbruch des Krystalphysik (Berlin, 1928).

    Google Scholar 

  17. A. Reuss and Z. Angew, Math. Mech. 9, 49 (1929).

    Article  CAS  Google Scholar 

  18. R. Hill, J. Mech. Phys. Solids 12, 199 (1964).

    Article  Google Scholar 

  19. R. Hill, J. Mech. Phys. Solids 13, 189 (1965).

    Article  Google Scholar 

  20. Z. Hashin and S. Shtrikman, J. Mech. Phys. Solids 11, 127 (1963).

    Article  Google Scholar 

  21. J. R. Willis, J. Mech. Phys. Solids 25, 185 (1977).

    Article  Google Scholar 

  22. G. K. Hu and G. J. Weng, Mech. Mater. 32, 495 (2000).

    Article  Google Scholar 

  23. A. Aboutajeddine and K. W. Neale, Mech. Mater. 37, 331 (2005).

    Article  Google Scholar 

  24. T. T. Wang, J. Appl. Phys. 44, 2218 (1973).

    Article  Google Scholar 

  25. J. Janzen, Polym. Eng. Sci. 32, 1242 (1932).

    Article  Google Scholar 

  26. P. D. Davidse, H. I. Waterman, and J. B. Westerdijk, J. Polym. Sci. 59, 389 (1962).

    Article  CAS  Google Scholar 

  27. B. Crist, C. J. Fischer, and P. R. Howard, Macromolecules 22, 1709 (1989).

    Article  CAS  Google Scholar 

  28. J. J. Herman, Proc. K. Ned. Akad. Wet. 70, 1 (1967).

    Google Scholar 

  29. D. C. Bassett, S. Block, and G. J. Piermarini, J. Appl. Phys. 45, 4146 (1974).

    Article  CAS  Google Scholar 

  30. M. Hikosaka, Polymer 28, 1257 (1987).

    Article  CAS  Google Scholar 

  31. J. Rault and E. Robelin-Souffaché, J. Polym. Sci., Part B: Polym. Phys. 27, 1349 (1989).

    Article  CAS  Google Scholar 

  32. M. A. Wilding and I. M. Ward, Polymer 19, 969 (1978).

    Article  CAS  Google Scholar 

  33. T. Yamamoto, H. Miyaji, and K. Asai, J. Appl. Phys. 16, 1891 (1977).

    Article  CAS  Google Scholar 

  34. G. Capaccio, T. A. Crompton, and I. M. Ward, Polymer 17, 644 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Ahzi.

Additional information

Published in Russian In Vysokomolekulyarnye Soedineniya, Ser. A, 2008, Vol. 50, No. 5, pp. 809–820.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gueguen, O., Ahzi, S., Belouettar, S. et al. Comparison of micromechanical models for the prediction of the effective elastic properties of semicrystalline polymers: Application to polyethylene. Polym. Sci. Ser. A 50, 523–532 (2008). https://doi.org/10.1134/S0965545X08050064

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X08050064

Keywords

Navigation