Skip to main content
Log in

Relationship between the structure of compounds and the effect of Pluronic L61 on their permeation through lipid membranes

  • Membranes
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

In view of the earlier observation that the incorporation of Pluronics in lipid membranes enhances their permeability to various drugs, the relationship between the structure of a permeant and the Pluronic-induced acceleration of its membrane transport was studied. The extent of acceleration defined as the ratio of the apparent permeation rate constants in the presence and in the absence of Pluronic, k/k 0, was determined for 21 weak acids and bases. Multiparameter correlations of the obtained data with various structural characteristics of the solutes transferable were constructed. Twelve structural parameters of the permeants were examined. The best correlation was achieved with a linear combination of the three parameters: the McGowan volume V of a compound, its proton-donating ability A, and the projection of the dipole moment of the molecule onto the normal to the membrane surface μZ, ln(k/k 0) = −0.87-0.44μZ + 0.31 V + 0.28A, R = 0.90. This means that Pluronic preferably accelerates the permeation of large molecules containing proton-donating groups and molecules incorporated in the lipid bilayer in such a manner that the vector of their dipole moment is aligned with the dipole potential of the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. R. Schmolka and I. G. Lundsted, The Synthesis and Properties of Block Copolymer Polyol Surfactants. Block and Graft Copolymerization (Wiley, New York, 1986).

    Google Scholar 

  2. C. R. E. Mansur, S. P. Barboza, G. Gonzalez, and E. F. Lucas, J. Colloid Interface Sci. 271, 232 (2004).

    Article  CAS  Google Scholar 

  3. I. A. Dudukin, S. S. Medvedev, and I. A. Gritskova, Dokl. Akad. Nauk SSSR 17, 133 (1966).

    Google Scholar 

  4. S. S. Talmage, Environmental and Human Safety of Major Surfactants: Alcohol Ethoxylates and Alkylphenol Ethoxylates (Lewis, Boca Raton, 1994), p. 51.

    Google Scholar 

  5. S. M. Moghimi and A. C. Hunter, Trends Biotechnol. 18, 412 (2000).

    Article  CAS  Google Scholar 

  6. P. Anthony, K. C. Lowe, M. R. Davey, and J. B. Power, Artif. Cells Blood Substit. Immobil. Biotechnol. 26, 27 (1998).

    CAS  Google Scholar 

  7. C. Pool, D. F. Nutting, W. J. Simmonds, and P. Tso, Am. J. Physiol. 261, 256 (1991).

    Google Scholar 

  8. A. V. Kabanov and T. Okano, Adv. Exp. Med. Biol. 519, 1 (2003).

    Article  CAS  Google Scholar 

  9. A. V. Kabanov, E. V. Batrakova, and V. Yu. Alakhov, Adv. Drug Delivery Rev. 54, 759 (2002).

    Article  CAS  Google Scholar 

  10. N. S. Melik-Nubarov, O. O. Pomaz, T. Yu. Dorodnych, et al., FEBS Lett. 446, 194 (1999).

    Article  CAS  Google Scholar 

  11. T. Demina, I. Grozdova, O. Krylova, et al., Biochemistry 44, 4042 (2005).

    Article  CAS  Google Scholar 

  12. V. Yu. Erukova, O. O. Krylova, Yu. N. Antonenko, and N. S. Melik-Nubarov, Biochim. Biophys. Acta 1468, 73 (2000).

    Article  CAS  Google Scholar 

  13. A. E. Zhimov, D. N. Pavlov, T. V. Demina, et al., Polymer Science, Ser. A 48, 1202 (2006) [Vysokomol. Soedin., Ser. A 48, 2023 (2006)].

    Article  Google Scholar 

  14. A. E. Zhirnov, T. V. Demina, O. O. Krylova, et al., Biochim. Biophys. Acta 1720, 73 (2005).

    Article  CAS  Google Scholar 

  15. P. R. Harrigan, K. F. Wong, T. E. Redelmeier, et al., Biochim. Biophys. Acta 1149, 329 (1993).

    Article  CAS  Google Scholar 

  16. F. Kamp and J. A. Hamilton, Proc. Natl. Acad. Sci. U.S.A. 89, 11367 (1992).

    Google Scholar 

  17. R. M. C. Dawson, D. C. Elliot, W. H. Elliot, and K. M. Jones, Data for Biochemical Research (Oxford University Press, Oxford, 1986; Mir, Moscow, 1991) [in Russian].

    Google Scholar 

  18. M. H. Abraham, A. Ibrahim, A. M. Zissimos, et al., Drug Discovery Today 7, 1056 (2002).

    Article  CAS  Google Scholar 

  19. W. A. J. Gutknecht, J. Membr. Biol. 77, 255 (1984).

    Article  Google Scholar 

  20. S. M. Saparov, Y. N. Antonenko, and P. Pohl, Biophys. J. 90(11), 86 (2006).

    Article  CAS  Google Scholar 

  21. M. H. Abraham and J. C. McGowan, Chromatographia 23, 243 (1987).

    Article  CAS  Google Scholar 

  22. A. Leo, C. Hansch, and D. Elkins, Chem. Rev. 71, 525 (1971).

    Article  CAS  Google Scholar 

  23. A. J. A. Aquino, D. Tunega, G. Haberhauer, et al., J. Phys. Chem. A 106, 1862 (2002).

    Article  CAS  Google Scholar 

  24. M. H. Abraham, A. Ibrahim, and A. M. Zissimos, J. Chromatogr. A 1037, 29 (2004).

    Article  CAS  Google Scholar 

  25. M. J. Kamlet, R. M. Doherty, M. H. Abraham, et al., Environ. Sci. Technol. 21, 149 (1987).

    Article  CAS  Google Scholar 

  26. M. H. Abraham, Chem. Soc. Rev. 22, 73 (1993).

    Article  CAS  Google Scholar 

  27. P. Ertl, B. Rohde, and P. Selzer, J. Med. Chem. 43, 3714 (2000).

    Article  CAS  Google Scholar 

  28. R. J. Clarke, Adv. Colloid Interface Sci. 89–90, 263 (2001).

    Article  Google Scholar 

  29. Yu. A. Liberman and V. P. Topaly, Biofizika 14, 452 (1969).

    CAS  Google Scholar 

  30. Heywang, S. P.-M. Chazalet, C. M. Masson, and J. Bolard, Biophys. J. 75, 2368 (1998).

    Google Scholar 

  31. T. X. Xiang and B. D. Anderson, Biophys. J. 75, 2658 (1998).

    Article  CAS  Google Scholar 

  32. T. J. Hou, W. Zhang, K. Xia, et al., J. Chem. Inf. Comput. Sci. 44, 1585 (2004).

    Article  CAS  Google Scholar 

  33. A. D. Antipina, V. Yu. Baranovskii, I. M. Papisov, and V. A. Kabanov, Vysokomol. Soedin., Ser. A 14, 941 (1972).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Bugrin.

Additional information

Original Russian Text © V.S. Bugrin, N.S. Melik-Nubarov, 2007, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2007, Vol. 49, No. 9, pp. 1689–1702.

This work was supported by the Russian Foundation for Basic Research, project no. 06-03-32403, and the State Program for Supporting Leading Scientific Schools, grant no. NSh-5899.2006.3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bugrin, V.S., Melik-Nubarov, N.S. Relationship between the structure of compounds and the effect of Pluronic L61 on their permeation through lipid membranes. Polym. Sci. Ser. A 49, 1034–1044 (2007). https://doi.org/10.1134/S0965545X07090118

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X07090118

Keywords

Navigation