Skip to main content
Log in

Effect of the structure of ethylene oxide-propylene oxide block copolymers on their interaction with biological membranes

  • Solutions
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Partition coefficients of ethylene oxide-propylene oxide block copolymers between the lipid phase and water have been estimated via equilibrium dialysis. It has been shown that for the triblock copolymer (Pluronic L61), the partition coefficient is 45 ± 9, while for the diblock copolymer (REP), this parameter is as high as 78 ± 17. The effect of the copolymers on the permeation of the charged organic ion carboxyfluorescein across the lecithin bilayer membrane changes in the same direction. Even though the triblock copolymer binding is weaker, it shows a stronger effect on the rate of transbilayer migration of lipids and on the permeation of the uncharged substance (doxorubicin). The incorporation of cholesterol into the membrane decreases its sensitivity to the action of copolymers; however, the character of changes induced by both copolymers remains invariable. The experimental data of this study indicate that the triblock structure of amphiphilic macromolecules is responsible for their higher ability to disturb lipid bilayer membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. R. Schmolka, Polymers for Controlled Drug Delivery, Ed. by P. J. Tarcha (CRC, Boca Raton, 1991), p. 189.

    Google Scholar 

  2. S. M. Moghimi and A. C. Hunter, Trends Biotechnol. 18, 412 (2000).

    Article  CAS  Google Scholar 

  3. A. V. Kabanov, V. P. Chekhonin, V. Yu. Alakhov, et al., FEBS Lett. 258, 343 (1989).

    Article  CAS  Google Scholar 

  4. P. Anthony, K. C. Lowe, M. R. Davey, and J. B. Power, Artif. Cells Blood Substit. Immobil. Biotechnol. 26, 27 (1998).

    Article  CAS  Google Scholar 

  5. A. V. Kabanov and T. Okano, Adv. Exp. Med. Biol. 519, 1 (2003).

    CAS  Google Scholar 

  6. T. Demina, I. Grozdova, O. Krylova, et al., Biochemistry 44, 4042 (2005).

    Article  CAS  Google Scholar 

  7. M. A. Firestone and S. Seifert, Biomacromolecules 6, 2678 (2005).

    Article  CAS  Google Scholar 

  8. M. A. Firestone, A. C. Wolf, and S. Seifert, Biomacromolecules 4, 1539 (2003).

    Article  CAS  Google Scholar 

  9. O. O. Krylova, N. S. Melik-Nubarov, G. A. Badun, et al., Chem. Eur. J. 9, 3930.

  10. J. Dechant, R. Danz, W. Kimmer, and R. Schmolke, Ultrarotspektroskopische Untersuchungen an Polymeren (Akademie, Berlin, 1972; Khimiya, Moscow, 1976).

    Google Scholar 

  11. M. Yu. Kozlov, N. S. Melik-Nubarov, E. V. Batrakova, and A. V. Kabanov, Macromolecules 33, 3305 (2000).

    Article  CAS  Google Scholar 

  12. N. S. Melik-Nubarov, O. O. Pomaz, T. Yu. Dorodnych, et al., FEBS Lett. 446, 194 (1999).

    Article  CAS  Google Scholar 

  13. R. R. C. New, Liposomes: A Practical Approach (IRL, Oxford, 1990).

    Google Scholar 

  14. P. R. Harrigan, K. F. Wong, T. E. Redelmeier, et al., Biochim. Biophys. Acta 1149, 329 (1993).

    Article  CAS  Google Scholar 

  15. V. Yu. Erukova, O. O. Krylova, Yu. N. Antonenko, and N. S. Melik-Nubarov, Biochim. Biophys. Acta 1468, 73 (2000).

    Article  CAS  Google Scholar 

  16. J. C. McIntyre and R. G. Sleight, Biochemistry 30, 11819 (1991).

    Article  CAS  Google Scholar 

  17. N. Duzgunes and J. Wilschut, Methods Enzymol. 220, 3 (1993).

    Article  CAS  Google Scholar 

  18. Lymphocytes. A Practical Approach, Ed. by G. G. B. Klaus (IRL, Oxford, 1987; Mir, Moscow, 1990).

    Google Scholar 

  19. P. Alexandridis, J. F. Holzwarth, and T. A. Hatton, Macromolecules 27, 2414 (1994).

    Article  CAS  Google Scholar 

  20. H. Heerklotz and J. Seelig, Biophys. J. 78, 2435 (2000).

    Article  CAS  Google Scholar 

  21. A. De la Maza, O. Lopez, L. Coderch, and J. L. Parra, Colloids Surf., A 145, 83 (1998).

    Article  Google Scholar 

  22. H. Altinok, G.-E. Yu, S. K. Nixon, et al., Langmuir 13, 5837 (1997).

    Article  CAS  Google Scholar 

  23. A. E. Zhirnov, T. V. Demina, O. O. Krylova, et al., Biochim. Biophys. Acta 1720, 73 (2005).

    Article  CAS  Google Scholar 

  24. J. Plasek and P. Jarolim, Gen. Physiol. Biophys. 6, 425 (1987).

    CAS  Google Scholar 

  25. A. Parsegian, Nature (London) 221, 844 (1969).

    Article  CAS  Google Scholar 

  26. I. N. Topchieva, S. V. Osipova, M. I. Banatskaya, and L. A. Val’kova, Dokl. Akad. Nauk SSSR 308, 910 (1989).

    CAS  Google Scholar 

  27. K. Bryskhe, K. Schillén, J.-E. Löfroth, and U. Olsson, Phys. Chem. Chem. Phys. 3, 1303 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.E. Zhirnov, D.N. Pavlov, T.V. Demina, G.A. Badun, I.D. Grozdova, N.S. Melik-Nubarov, 2006, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2006, Vol. 48, No. 11, pp. 2023–2033.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhirnov, A.E., Pavlov, D.N., Demina, T.V. et al. Effect of the structure of ethylene oxide-propylene oxide block copolymers on their interaction with biological membranes. Polym. Sci. Ser. A 48, 1202–1210 (2006). https://doi.org/10.1134/S0965545X06110113

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X06110113

Keywords

Navigation