Skip to main content
Log in

Complexes based on rigid-chain polyelectrolytes: Computer simulation

  • Modeling
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The structure and stability of complexes formed by oppositely charged rigid-chain macromolecules, as well as their response to variation in external conditions, were studied using the molecular dynamics method. The conditions of conformational transitions depending on the chain length and configuration, temperature, and dielectric permittivity of the medium were considered. It was shown that the chains involved in a complex may take various conformations of the torus, tennis racket, etc., types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Kabanov, T. K. Bronich, V. A. Kabanov, and Yu. K. Eisenberg, J. Am. Chem. Soc. 120, 9941 (1998).

    Article  CAS  Google Scholar 

  2. V. A. Kabanov, in Macromolecular Complexes in Chemistry and Biology, Ed. by P. L. Dubin (Springer, New York, 1994), p. 151.

    Google Scholar 

  3. P. L. Felgner, T. R. Gadek, M. Holm, et al., Proc. Natl. Acad. Sci. USA 84, 7413 (1987).

    Article  CAS  Google Scholar 

  4. W. Chen, N. J. Turro, and D. A. Tomalia, Langmuir 16, 15 (1999).

    Article  CAS  Google Scholar 

  5. V. A. Kabanov, A. B. Zezin, V. B. Rogacheva, et al., Macromolecules 32, 1904 (1999).

    Article  CAS  Google Scholar 

  6. P. Welch and M. Muthukumar, Macromolecules 33, 6159 (2000).

    Article  CAS  Google Scholar 

  7. I. Gossl, L. Shu, A. D. Schluter, and J. P. Rabe, J. Am. Chem. Soc. 124, 6860 (2002).

    Article  CAS  Google Scholar 

  8. M. Stevens and K. Kremer, J. Chem. Phys. 103, 1669 (1995).

    Article  CAS  Google Scholar 

  9. D. Stigter, Biophys. J. 69, 380 (1995).

    CAS  Google Scholar 

  10. R. Winkler, New J. Phys. 6, 11 (2004).

    Article  CAS  Google Scholar 

  11. D. Srivastava and M. Muthukumar, Macromolecules 27, 1461 (1994).

    Article  CAS  Google Scholar 

  12. J. B. Imbert, J. Victor, N. Tsunekawa, and Y. Hiwatari, Phys. Lett. A 258, 92 (1999).

    Article  CAS  Google Scholar 

  13. Y. Hayashi, U. Magnus, and P. Linse, J. Chem. Phys. 116, 6836 (2002).

    Article  CAS  Google Scholar 

  14. R. S. Dias, A. A. C. C. Pais, M. G. Miguel, and B. Lindman, J. Chem. Phys. 119, 8150 (2003).

    Article  CAS  Google Scholar 

  15. A. P. Lyubartsev and N. Nordenskiöld, J. Phys. Chem., B 101, 4335 (1997).

    CAS  Google Scholar 

  16. T. Akitaya, K. Tsumoto, A. Yamada, et al., Biomacromolecules 4, 1121 (2003).

    Article  CAS  Google Scholar 

  17. Yu. Yoshikawa, Y. S. Velichko, Yu. Ichiba, and K. Yoshikawa, Eur. J. Biochem. 268, 2593 (2001).

    Article  CAS  Google Scholar 

  18. M. Ueda and K. Yoshikawa, Phys. Rev. Lett. 77, 2133 (1996).

    Article  CAS  Google Scholar 

  19. V. V. Vasilevskaya, A. R. Khokhlov, Y. Matsuzawa, and K. Yoshikawa, J. Chem. Phys. 102, 6595 (1995).

    Article  CAS  Google Scholar 

  20. A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989; American Institute of Physics, Ithaca, 1994).

    Google Scholar 

  21. M. Lifshitz, A. Y. Grosberg, and A. R. Khokhlov, Rev. Mod. Phys. 50, 683 (1978).

    Article  CAS  Google Scholar 

  22. A. Yu. Grosberg, Biofizika 24, 32 (1979).

    CAS  Google Scholar 

  23. A. Y. Grosberg and A. R. Khokhlov, Adv. Polym. Sci. 41, 53 (1981).

    CAS  Google Scholar 

  24. A. E. Cohen and L. Mahadevan, Proc. Natl. Acad. Sci. USA 100, 12141 (2003).

    Article  CAS  Google Scholar 

  25. B. Schnurr, F. Gittes, and F. C. MacKintosh, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 65, 0619041 (2002).

  26. J. A. Martemyanova, M. R. Stukan, V. A. Ivanov, et al., J. Chem. Phys. 122, 1749071 (2005).

    Google Scholar 

  27. V. A. Bloomfield, Curr. Opin. Struct. Biol. 6, 334 (1996).

    Article  CAS  Google Scholar 

  28. Z. Lin, C. Wang, X. Feng, et al., Nucleic Acids Res. 26, 3228 (1998).

    Article  CAS  Google Scholar 

  29. Y. Fang and J. H. Hoh, Nucleic Acids Res. 26, 588 (1998).

    Article  CAS  Google Scholar 

  30. J. Ubbink and T. Odijk, Biophys. J. 68, 54 (1995).

    CAS  Google Scholar 

  31. J. Ubbink and T. Odijk, Europhys. Lett. 33, 353 (1996).

    Article  CAS  Google Scholar 

  32. S. Y. Park, D. Harries, and W. M. Gelbart, Biophys. J. 75, 714 (1998).

    CAS  Google Scholar 

  33. V. V. Vasilevskaya, A. R. Khokhlov, S. Kodoaki, and K. Yoshikawa, Biopolymers 41, 51 (1997).

    Article  CAS  Google Scholar 

  34. I. C. B. Miller, M. Keentok, G. G. Pereira, and D. R. M. Williams, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 71, 031802 (2005).

  35. H. Noguchi and K. Yoshikawa, J. Chem. Phys. 109, 5070 (1998).

    Article  CAS  Google Scholar 

  36. M. J. Stevens, Biophys. Soc. 80, 130 (2001).

    CAS  Google Scholar 

  37. M. R. Stukan, V. A. Ivanov, A. Y. Grosberg, et al., J. Chem. Phys. 118, 3392 (2003).

    Article  CAS  Google Scholar 

  38. C. C. Conwell, I. D. Vilfan, and N. V. Hud, Proc. Natl. Acad. Sci. USA 100, 9296 (2003).

    Article  CAS  Google Scholar 

  39. A. G. Cherstvy, J. Phys.: Condens. Matter 17, 1363 (2005).

    Article  CAS  Google Scholar 

  40. K. Yoshikawa, M. Takahashi, V. V. Vasilevskaya, and A. R. Khokhlov, Phys. Rev. Lett. 76, 3029 (1996).

    Article  CAS  Google Scholar 

  41. P. G. Arscott, A. Z. Li, and V. A. Bloomfield, Biopolymers 30, 619 (1990).

    Article  CAS  Google Scholar 

  42. R. Golan, L. I. Pietrasanta, W. Hsieh, and H. G. Hansma, Biochemistry 38, 14069 (1999).

    Article  CAS  Google Scholar 

  43. U. K. Laemmli, Proc. Natl. Acad. Sci. USA 72, 4288 (1975).

    Article  CAS  Google Scholar 

  44. Y. Fang and J. N. Hoh, Nucleic Acids Res. 26, 588 (1998).

    Article  CAS  Google Scholar 

  45. R. B. Inman, J. Mol. Biol. 25, 209 (1967).

    Article  CAS  Google Scholar 

  46. T. Blessing, J. S. Remy, and J. P. Behr, Proc. Natl. Acad. Sci. USA 95, 1427 (1998).

    Article  CAS  Google Scholar 

  47. J. C. Stiko, E. M. Mateescu, and H. G. Hansma, Biophys. J. 84, 419 (2003).

    Article  Google Scholar 

  48. P. G. Khalatur, Vysokomol. Soedin., Ser. A 22, 2050 (1980).

    CAS  Google Scholar 

  49. P. G. Khalatur, Vysokomol. Soedin., Ser. A 22, 2226 (1980).

    CAS  Google Scholar 

  50. S. Danielsen, K. M. Varum, and B. T. Stokke, Biomacromolecules 5, 928 (2004).

    Article  CAS  Google Scholar 

  51. G. Maurstad and B. T. Stokke, Biopolymers 74, 199 (2004).

    Article  CAS  Google Scholar 

  52. P. G. Khalatur, A. R. Khokhlov, D. A. Mologin, and P. Reineker, J. Chem. Phys. 119, 1232 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.A. Gus’kova, A.S. Pavlov, P.G. Khalatur, 2006, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2006, Vol. 48, No. 7, pp. 1166–1175.

This work was supported by the Russian Foundation for Basic Research, project nos. 04-03-32185a and 05-03-32952a.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gus’kova, O.A., Pavlov, A.S. & Khalatur, P.G. Complexes based on rigid-chain polyelectrolytes: Computer simulation. Polym. Sci. Ser. A 48, 763–770 (2006). https://doi.org/10.1134/S0965545X06070145

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X06070145

Keywords

Navigation