Skip to main content
Log in

The use of a continuous relaxation spectrum for describing the viscoelastic properties of polymers

  • Structure, Properties
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

For describing the viscoelastic properties of polymeric materials, the continuous relaxation spectrum is proposed instead of the discrete spectrum of relaxation time distribution, which is usually employed in practical calculations. For polymer melts and solutions, such a continuous spectrum is assumed to be represented by a power function and to have a certain maximum relaxation time as its upper bound. The spectrum is determined by three constants: the upper bound (maximum relaxation time), slope in the logarithmic scale (exponent), and height (form factor). The necessity to find a small number of parameters is an advantage in comparison with the need to determine a large number of constants within the concept of a discrete relaxation time spectrum and corresponding weights. The central idea is that the parameters of the continuous spectrum can be unambiguously determined from the experimentally found integral characteristics (moments) of the viscoelastic behavior of the material: the viscosity, normal stress coefficient, and area under the relaxation curve after the cessation of steady flow. The proposed choice of the relaxation spectrum shape is shown to provide an adequate description of the specific features of viscoelastic behavior for melts of polymers with a varying MM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. H. Winter, J. Non-Newtonian Fluid Mech. 68, 225 (1997).

    CAS  Google Scholar 

  2. W. Thimm, Ch. Freidrich, and M. Marth, J. Rheol. (N. Y.) 44, 429 (2000).

    CAS  Google Scholar 

  3. A. Ya. Malkin, Vysokomol. Soedin., Ser. B 44, 1598 (2002) [Polymer Science, Ser. B 44, 247 (2002)].

    CAS  Google Scholar 

  4. V. A. Dubovitskii and V. I. Irzhak, Vysokomol. Soedin., Ser. B 47, 121 (2005) [Polymer Science, Ser. B 47, 22 (2005)].

    CAS  Google Scholar 

  5. B. Gross, Mathematical Structure of the Theories of Viscoelasticity (Hermann, Paris, 1953).

    Google Scholar 

  6. G. V. Vinogradov and A. Ya. Malkin, Rheology of Polymers (Khimiya, Moscow, 1977; Springer, Heidelberg, 1980).

    Google Scholar 

  7. V. A. Kargin and G. L. Slonimskii, Zh. Fiz. Khim. 23, 563 (1949).

    CAS  Google Scholar 

  8. M. Doi, J. Non-Newtonian Fluid Mech. 23, 151 (1987).

    CAS  Google Scholar 

  9. J. Honerkamp, Rheol. Acta 28, 363 (1989).

    Article  CAS  Google Scholar 

  10. A. Ya. Malkin, Rheol. Acta 29, 512 (1990).

    Article  CAS  Google Scholar 

  11. I. Emri and N. W. Tschoegl, Rheol. Acta 32, 311 (1993).

    Article  CAS  Google Scholar 

  12. A. Ya. Malkin and I. Masalova, Rheol. Acta 40, 261 (2001).

    Article  CAS  Google Scholar 

  13. M. Baumgaertel, A. Schrausberger, and H. H. Winter, Rheol. Acta 29, 400 (1990).

    Article  CAS  Google Scholar 

  14. A. Ya. Malkin, Rheol. Acta 7, 335 (1968).

    Google Scholar 

  15. G. V. Vinogradov, A. Ya. Malkin, Yu. G. Yanovsky, et al., Rheol. Acta 8, 490 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.Ya. Malkin, 2006, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2006, Vol. 48, No. 1, pp. 49–56.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malkin, A.Y. The use of a continuous relaxation spectrum for describing the viscoelastic properties of polymers. Polym. Sci. Ser. A 48, 39–45 (2006). https://doi.org/10.1134/S0965545X06010068

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X06010068

Keywords

Navigation