Skip to main content
Log in

Synthesis of Granular MCM-22 Zeolite with a Hierarchical Porous Structure

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The study proposes a novel approach for the synthesis of granular MCM-22 zeolite with a hierarchical micro–meso–macroporous structure. This approach is based on the crystallization of zeolite granules consisting of powdered MCM-22 and synthetic amorphous aluminosilicate. The synthesized material had 97% crystallinity and volumes of micro-, meso-, and macropores of 0.18, 0.22, and 0.46 cm3/g, respectively. The H-form of the hierarchical MCM-22 exhibited high activity and selectivity in dimerization of α-methylstyrene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Maxwell, I. and Stork, W., Introduct. Zeolite Sci. Pract., 1991, vol. 58, pp. 571–630. https://doi.org/10.1016/s0167-2991(08)63613-7

    Article  CAS  Google Scholar 

  2. Rubin, M.K. and Chu, P., Patent US 4954325, 1990.

  3. Yokoi, T., Mizuno, S., Imai, H., and Tatsumi, T., Dalton Trans., 2014, vol. 43, no. 27, pp. 10584–10592. https://doi.org/10.1039/C4DT00352G

    Article  CAS  PubMed  Google Scholar 

  4. Goergen, S., Fayad, E., Laforge, S., Magnoux, P., Rouleau, L., and Patarin, J., J. Porous Mater., 2011, vol. 18, pp. 639–650. https://doi.org/10.1007/s10934-010-9421-1

    Article  CAS  Google Scholar 

  5. Abril, R.P.L., Bewes, E., Green, G.J., Marler, D.O., Sihabi, D.S., and Sacha, R.F., Patent US 5085762, 1992.

  6. Wu, P., Komatsu, T., and Yashima, T., Micropor. Mesopor. Mater., 1998, vol. 22, pp. 343–356. https://doi.org/10.1016/S1387-1811(98)00114-0

    Article  CAS  Google Scholar 

  7. Maheshwari, S., Jordan, E., Kumar, S., Bates, F.S., Penn, R.L., Shantz, D.F., and Tsapatsis, M., J. Am. Chem. Soc., 2008, vol. 130, no. 4, pp. 1507–1516. https://doi.org/10.1021/ja077711i

    Article  CAS  PubMed  Google Scholar 

  8. Schwanke, A.J., Pergher, S., and Díaz, U., Corma, A., Micropor. Mesopor. Mater., 2017, vol. 254, pp. 17–27. https://doi.org/10.1016/j.micromeso.2016.11.007

    Article  CAS  Google Scholar 

  9. Chlubna, P., Roth, W.J., Zukal, A., Kubu, M., and Pavlatova, J., Catal. Today, 2012, vol. 179, pp. 35–42. https://doi.org/10.1016/j.cattod.2011.06.035

    Article  CAS  Google Scholar 

  10. Roth, W.J., Chlubna, P., Kubu, M., and Vitvarova, D., Catal. Today, 2013, pp. 204, pp. 8–14. https://doi.org/10.1016/j.cattod.2012.07.040

  11. Roth, W.J., Cejka, J., Millini, R., Montanari, E., Gil, B., and Kubu, M., Chem. Mater., 2015, vol. 27, pp. 4620–4629. https://doi.org/10.1021/acs.chemmater.5b01030

    Article  CAS  Google Scholar 

  12. Kornatowski, J., Barth, J.O., and Erdmann, K., Rozwadowski, M., Micropor. Mesopor. Mater., 2006, vol. 90, nos. 1–3, pp. 251–258. https://doi.org/10.1016/j.micromeso.2005.08.007

    Article  CAS  Google Scholar 

  13. Tao, Y., Kanoh, H., Abrams, L., and Kaneko, K., Chem. Rev., 2006, vol. 106, no. 3, pp. 896–910. https://doi.org/10.1021/cr040204o

    Article  CAS  PubMed  Google Scholar 

  14. Corma, A., Fornes, V., Pergher, S.B., Maesen, Th.L.M., and Buglass, J.G., Nature, 1998, vol. 396, pp. 353–356. https://doi.org/10.1038/24592

    Article  CAS  Google Scholar 

  15. Corma, A., Diaz, U., Fornes, V., Guil, J.M., MartínezTriguero, J., and Creyghton, E.J., J. Catal., 2000, vol. 191, no. 1, pp. 218–224. https://doi.org/10.1006/jcat.1999.2774

    Article  CAS  Google Scholar 

  16. Corma, A., Fornes, V., Martinez–Triguero, J., and Pergher, S.B., J. Catal., 1999, vol. 186, no. 1, pp. 57–63. https://doi.org/10.1006/jcat.1999.2503

    Article  CAS  Google Scholar 

  17. Roth, W.J. and Vartuli, J.C., Stud. Surf. Sci. Catal., 2002, vol. 141, pp. 273–279. https://doi.org/10.1016/s0167-2991(02)80552-3

    Article  CAS  Google Scholar 

  18. Barth, J.O., Kornatowski, J., and Lercher, J.A., Mater. Chem., 2002, vol. 12, pp. 369–373. https://doi.org/10.1039/b104824b

    Article  CAS  Google Scholar 

  19. Roth, W., Pol. J. Chem., 2006, vol. 80, no. 5, pp. 703–708.

    CAS  Google Scholar 

  20. Kresge, C.T. and Roth, W.J., Patent US 5266541, 1993.

  21. Kresge, C.T. and Roth, W.J., Patent US 5278115, 1994.

  22. Kresge, C.T., Roth, W.J., Simmons, K.G., and Vartuli, J.C., Patent US 9211935, 1992.

  23. Knyazeva, E.E., Shkuropatov, A.V., Zasukhin, D.S., Dobryakova, I.V., Ponomareva, O.A., and Ivanova, I.I., J. Phys. Chem., 2019, vol. 93, no. 10, pp. 1939–1945. https://doi.org/10.1134/s0036024419100133

    Article  CAS  Google Scholar 

  24. Gerzeliev, I.M., Zhmylev, V.P., Khusaimova, D.O., Shkuropatov, A.V., Knyazeva, E.E., Ponomareva, O.A., Ivanova, I.I., and Maksimov, A.L., Petrol. Chem., 2019, vol. 59, no. 4, pp. 410–416. https://doi.org/10.1134/S0965544119070041

    Article  Google Scholar 

  25. Emeis, C.A., J. Catal., 1993, vol. 141, no. 2, pp. 347–354. https://doi.org/10.1006/jcat.1993.1145

    Article  CAS  Google Scholar 

  26. Corma, C., Corell, V., Fornes, W., Kolodziejski, J., and Perez–Pariente, J., Zeolites, 1995, vol. 15, pp. 576–582. https://doi.org/10.1016/0144-2449(95)00015-X

    Article  CAS  Google Scholar 

  27. Guisnet, M., Ayrault, P., and Datka, J., Pol. J. Chem., 1997, vol. 71, pp. 1455–1461.

    CAS  Google Scholar 

  28. Bevilacqua, M., Meloni, D., Sini, F., Monaci, R., Montanari, T., and Busca, G., J. Phys. Chem., 2008, vol. 112, no. 24, pp. 9023–9033. https://doi.org/10.1021/jp801072h

    Article  CAS  Google Scholar 

  29. Kumar, G.S., Saravanamurugan, S., Hartmann, M., Palanichamy, M., and Murugesan, V., J. Mol. Catal., 2007, vol. 272, nos. 1–2, pp. 38–44. https://doi.org/10.1016/j.molcata.2007.03.021

    Article  CAS  Google Scholar 

  30. Meriaudeau, P., Tuan, V.A., Lefebvre, F., Nghiem, V.T., Naccache, C., Micropor. Mesopor. Mater., 1998, vol. 185, pp. 378–385. https://doi.org/10.1006/jcat.1999.2475

    Article  Google Scholar 

  31. Grigor'eva, N.G., Paukshtis, E.A., Kutepov, B.I., Galyautdinova, R.R., and Dzhemilev, U.M., Petrol. Chem., 2005, vol. 45, no. 6, pp. 419–425.

    Google Scholar 

Download references

Funding

This work was performed within the State Program of the Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences (IPC UFRC RAS, project no. FMRS-2022-0080). The structural investigation was carried out at the Agidel Regional Center for Collective Use of UFRC RAS within the State Program of IPC UFRC RAS (project no. FMRS-2022-0081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Travkina.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhirnova, E.D., Travkina, O.S. Synthesis of Granular MCM-22 Zeolite with a Hierarchical Porous Structure. Pet. Chem. (2024). https://doi.org/10.1134/S0965544124020129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0965544124020129

Keywords:

Navigation