Skip to main content
Log in

Structural and Acidic Properties of Ion-Exchanged Mazzite

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A range of modified MAZ and LTL zeolites have been prepared and ion-exchanged with a series of alkali metal cations. It has been shown that K, Rb and Cs can be readily introduced into the MAZ structure with ~2 cations ion-exchanged per unit cell. In contrast, less than one cation of Li or Na per unit cell has been introduced under similar conditions. Ion-exchanged zeolites have been characterised using Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy, X-ray fluorescence and N2 physisorption in order to gain a better understanding of their structural and acidic properties. The FTIR data indicate considerable heterogeneity of the bridging OH groups in mazzite. The concentration of both Brønsted and Lewis acid sites detected in MAZ using pyridine as a probe molecule is lower than expected from its chemical composition, with the relative accessibility of the bridging OH-groups varying from 16% for H-MAZ to 28% for K-exchanged samples. This is in agreement with the N2 adsorption-desorption data showing a rather low micropore volume for the ion-exchanged materials and with the NH3-TPD results implying considerable transport limitations. This work demonstrates that the channel structure of mazzite is partially blocked resulting in a decreased micropore volume and limited access to the acid sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Flanigen, E., Kellberg, E.R., US Patent 4241036, 1980.

  2. Ciric, J., US Patent 3923639, 1975.

  3. Galli, E., Cryst. Struct. Comm., 1974, vol. 3, no. 2, p. 339–344.

    CAS  Google Scholar 

  4. Galli, E., Passaglia, E., and Pongiluppi, D., Contr. Mineral. Petrol., 1974, vol. 45, pp. 99–105. https://doi.org/10.1007/BF00371162

    Article  CAS  Google Scholar 

  5. Rinaldi, R., Pluth, J.J., and Smith, J.V, Acta Cryst. B, 1975, vol. 31, pp. 1603–1608. https://doi.org/10.1107/S0567740875005778

    Article  Google Scholar 

  6. McCusker, L.B., Olson, D.H., Baerlocher, C., Atlas of Zeolite Framework Types, Amsterdam: Elsevier, 2007.

  7. Ernst, S., Weitkamp, J., Catal. Today, 1994, vol. 19, pp. 27–60. https://doi.org/10.1016/0920-5861(94)85003-8

    Article  CAS  Google Scholar 

  8. Gackowski, M., Kuterasiński, Ł., Podobiński, J., Korzeniowska, A., Sulikowski, B., Datka, J., Appl. Catal. A: Gen., 2019, vol. 578, pp. 53–62. https://doi.org/10.1016/j.apcata.2019.03.016

    Article  CAS  Google Scholar 

  9. Goossens, A., Feijen, E., Verhoeven, G., Wouters, B., Grobet, P., Pierre, J., and Martens, J., Micropor. Mesopor. Mat., 2000, vol. 35(6), pp. 555–572. https://doi.org/10.1016/S1387-1811(99)00250-4

    Article  Google Scholar 

  10. Vaughan, D.E.W., Catalysis and Adsorption by Zeolites, Studies in Surface Science and Catalysis, Ohlmann, G., Pfeifer, H., and Fricke, R., Eds., Amsterdam: Elsevier, 1991, vol. 65, p. 275.

  11. Guisnet, M., Ayrault, P., Coutanceau, C., Alvarez, M., and Datka, J., J. Chem. Soc., Faraday Trans., 1997, vol. 93, pp. 1661–1665. https://doi.org/10.1039/A607609B

  12. McQueen, D., Chiche, B., Fajula, F., Auroux, A., Guimon, C., Fitoussi, F., and Schulz, P., J. Catal., 1996, vol. 161, pp. 587–596. https://doi.org/10.1006/jcat.1996.0221

    Article  CAS  Google Scholar 

  13. Shigeishi, R., Chiche, B., and Fajula, F., Micropor. Mesopor. Mat., 2001, vol. 43, pp. 211–226. https://doi.org/10.1016/S1387-1811(00)00365-6

    Article  CAS  Google Scholar 

  14. McCusker, L.B., Baerlocher, C., Wilson, S.T., and Broach, R.W., J. Phys. Chem. C., 2009, vol. 113(22), pp. 9838–9844. https://doi.org/10.1021/jp9029248

    Article  CAS  Google Scholar 

  15. Momma, K. and Izumi, F., J. Appl. Crystallogr., 2011, vol. 44, pp. 1272–1276. https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  16. Momma, K. and Izumi, F., J. Appl. Cryst., 2008, vol. 41, pp. 653–658. https://doi.org/10.1107/S0021889808012016

    Article  CAS  Google Scholar 

  17. Lutterotti, L., Acta Crystal. Section A, 2000, A56, S54. https://doi.org/10.1107/S0108767300021954

  18. Lutterotti, L., Matthies, S., and Wenk, H., Proceeding of the Twelfth International Conference on Textures of Materials (ICOTOM-12), 1999, vol. 1, p. 1599. https://hdl.handle.net/11572/57067

  19. http://www.iza-structure.org/databases/

  20. https://www.icdd.com

  21. Zholobenko, V., Freitas, C., Jendrlin, M., Travert, A., Bazin, P., and Thibault-Starzyk, F., J. Catal., 2020, vol. 385, pp. 52–60. https://doi.org/10.1016/j.jcat.2020.03.003

    Article  CAS  Google Scholar 

  22. Windeck, H., Berger, F., and Sauer, J., Angew. Chem. Int. Edit., 2023, vol. 62, art. e202303204. https://doi.org/10.1002/anie.202303204

  23. Sherry, H.S., J. Phys. Chem., 1966, vol. 70(4), pp. 1158–1168. https://doi.org/10.1021/j100876a031

    Article  CAS  Google Scholar 

  24. Wieser, J., Knorpp, A.J., Stoian, D.C., Rzepka, P., Newton, M.A., and van Bokhoven, J.A., Angew. Chem. Int. Edit., 2023, vol. 62, art. e202305140. https://doi.org/10.1002/anie.202305140

  25. Knorpp, A.J., Pinar, A.B., Baerlocher, C., Mccusker, L.B., Casati, N., Newton, M.A., Checchia, S., Meyet, J., Palagin, D., and Van Bokhoven, J.A., Angew. Chem. Int. Edit., 2021, vol. 60, pp. 5854–5858. https://doi.org/10.1002/anie.202014030

    Article  CAS  Google Scholar 

  26. Mintova, S. and Barrier, N., Verified Synthesis of Zeolitic Materials, Third Revised Edition, IZA Synthesis Commission, 2016, pp. 215–221.

  27. Al-Ani, A., Freitas, C., and Zholobenko, V., Micropor. Mesopor. Mat., 2020, vol. 293, pp. 109805. https://doi.org/10.1016/j.micromeso.2019.109805

    Article  CAS  Google Scholar 

  28. Prasomsri, T., Jiao, W., Weng, S., and García-Martínez, J., Chem. Commun., 2015, vol. 51, pp. 8900–8911. https://doi.org/10.1039/C4CC10391B

    Article  CAS  Google Scholar 

Download references

Funding

A.A-A thanks the Ministry of Oil, Oil Marketing Company (SOMO, Baghdad, Iraq) for the funding provided under the grant SL-144-04B. A.C. and M.J. express their gratitude to the Keele postgraduate fund for financing the attendance fee at the ICDD X-ray diffraction workshop, which supported this research. The authors acknowledge MSc students Michael Moore and Byron Ross for their contributions. The authors also gratefully acknowledge our colleagues at Keele University for their helpful feedback, and Johnson Matthey PLC for the provision of a mazzite sample. M.J. thanks the Royal Society (grant IES/R3/203138), and the Newton Fund for part-funding his Ph.D. project. VZ thanks the Russian Science Foundation for the financial support (grant № 23-73-0005, https://rscf.ru/project/23-73-00005/).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alessandro Contini or Vladimir Zholobenko.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contini, A., Jendrlin, M., Al-Ani, A. et al. Structural and Acidic Properties of Ion-Exchanged Mazzite. Pet. Chem. (2024). https://doi.org/10.1134/S0965544123110099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0965544123110099

Keywords:

Navigation