Skip to main content
Log in

Functionalized Ionic Liquids as Asphaltene Dispersants: A Comparison between Aliphatic and Aromatic Cations

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

In this study, two groups of functionalized aliphatic and aromatic ILs with the same anions were synthesized and used as asphaltene dispersants. The quartz crystal microbalance and ultraviolet spectroscopy were used in this study, and the results obtained from these two techniques were in relatively good agreement with each other. The results showed that aromatic ILs generally possess better inhibitory performance than aliphatic ones. The molecular structure of IL anions also greatly influenced the dispersion of asphaltenes in a toluene solution. It seems that π-π interactions between asphaltene molecules and aromatic cations represent the main cause of the better performance of aromatic ILs. This hypothesis was also confirmed by observing the high dispersion ability of a maleate anion, which has a carbon-carbon double bond, compared to other studied anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Alimohammadi, S., Zendehboudi, S., and James, L., Fuel, 2019, vol. 252, pp. 753‒791. https://doi.org/10.1016/j.fuel.2019.03.016

    Article  CAS  Google Scholar 

  2. Leon, O., Rogel, E., Urbina, A., Andujar, A., and Lucas, A., Langmuir, 1999, vol. 15, no. 22, pp. 7653‒7657. https://doi.org/10.1021/la9812370

    Article  CAS  Google Scholar 

  3. Dolomatov, M.Y., Shutkova, S.A., Bakhtizin, R.Z., Dolomatova, M.M., Latypov, K.F., Gilmanshina, K.A., and Badretdinov, B.R., Petrol. Chem., 2020, vol. 60, no. 1, pp. 16‒21. https://doi.org/10.1134/s0965544120010077

    Article  CAS  Google Scholar 

  4. Petrova, L.M., Abbakumova, N.A., Foss, T.R., and Romanov, G.V., Petrol. Chem., 2011, vol. 51, no. 4, pp. 252‒256. https://doi.org/10.1134/s0965544111040062

    Article  CAS  Google Scholar 

  5. Kord, S., Mohammadzadeh, O., Miri, R., and Soulgani, B.S., Fuel, 2014, vol. 117, pp. 259‒268. https://doi.org/10.1016/j.fuel.2013.09.038

    Article  CAS  Google Scholar 

  6. Mansoori, G.A., J. Pet. Sci. Eng., 1997, vol. 17, nos. 1‒2, pp. 101‒111. https://doi.org/10.1016/S0920-4105(96)00059-9

    Article  CAS  Google Scholar 

  7. Mansoori, G.A., Jiang, T.S., and Kawanaka, S., Arab. J. Sci. Eng., 1988, vol. 13, no. 1, pp. 17‒34.

    CAS  Google Scholar 

  8. Mohammed, I., Mahmoud, M., El-Husseiny, A., Al Shehri, D., Al-Garadi, K., Kamal, M.S., and Alade, O.S., ACS Omega, 2021, vol. 6, no. 31, pp. 20091‒20102. https://doi.org/10.1021/acsomega.1c03198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Soulgani, B.S., Rashtchian, D., Tohidi, B., and Jamialahmadi, M., J. Japan Pet. Inst., 2009, vol. 52, no. 6, pp. 322‒331. https://doi.org/10.1627/jpi.52.322

    Article  Google Scholar 

  10. Allenson, S.J. and Walsh, M.A., Int. Symp. on Oilfield Chemistry, February 18–21, 1997, Houston, Texas, paper number SPE-37286-MS. https://doi.org/10.2118/37286-MS

  11. Chang, C.-L. and Fogler, H.S., Langmuir, 1994, vol. 10, no. 6, pp. 1749‒1757. https://doi.org/10.1021/la00018a022

    Article  CAS  Google Scholar 

  12. Goual, L., Sedghi, M., Wang, X.X., and Zhu, Z.M., Langmuir, 2014, vol. 30, no. 19, pp. 5394‒5403. https://doi.org/10.1021/la500615k

    Article  CAS  PubMed  Google Scholar 

  13. Mardani, E., Mokhtari, B., and Soulgani, B.S., Pet. Sci. Technol., 2018, vol. 36, no. 11, pp. 744‒749. https://doi.org/10.1080/10916466.2018.1445103

    Article  CAS  Google Scholar 

  14. Huang, Y.Q., Zhang, Y.B., and Xing, H.B., Chin. J. Chem. Eng., 2019, vol. 27, no. 6, pp. 1374‒1382. https://doi.org/10.1016/j.cjche.2019.01.012

    Article  CAS  Google Scholar 

  15. Kumar, A., in Environmental Processes and Management: Tools and Practices, Singh, R.M., Shukla, P., and Singh, P., Eds., 2020, pp. 285‒307. https://doi.org/10.1007/978-3-030-38152-3_15

  16. Paucar, N.E., Kiggins, P., Blad, B., De Jesus, K., Afrin, F., Pashikanti, S., and Sharma, K., Environ. Chem. Lett., 2021, vol. 19, no. 2, pp. 1205‒1228. https://doi.org/10.1007/s10311-020-01135-1

    Article  CAS  Google Scholar 

  17. Ullah, Z., Khan, A.S., Muhammad, N., Ullah, R., Alqahtani, A.S., Shah, S.N., Ghanem, O.B., Bustam, M.A., and Man, Z., J. Mol. Liq., 2018, vol. 266, pp. 673‒686. https://doi.org/10.1016/j.molliq.2018.06.024

    Article  CAS  Google Scholar 

  18. Zhao, Y.S., Chen, Z.H., Yang, F., and Zhen, Y.P., Curr. Org. Chem., 2020, vol. 24, no. 15, pp. 1763‒1774. https://doi.org/10.2174/1385272824999200716151819

    Article  CAS  Google Scholar 

  19. Hu, Y.F. and Guo, T.M., Langmuir, 2005, vol. 21, no. 18, pp. 8168‒8174. https://doi.org/10.1021/la050212f

    Article  CAS  PubMed  Google Scholar 

  20. Velusamy, S., Sakthivel, S., Gardas, R.L., and Sangwai, J.S., Ind. Eng. Chem. Res., 2015, vol. 54, no. 33, pp. 7999‒8009. https://doi.org/10.1021/acs.iecr.5b01337

    Article  CAS  Google Scholar 

  21. Bai, L., Nie, Y., Li, Y., Dong, H., and Zhang, X., Fuel Process. Technol., 2013, vol. 108, pp. 94‒100. https://doi.org/10.1016/j.fuproc.2012.04.008

    Article  CAS  Google Scholar 

  22. Boukherissa, M., Mutelet, F., Modarressi, A., Dicko, A., Dafri, D., Rogalski, M., Energy Fuels, 2009, vol. 23, no. 5, pp. 2557‒2564. https://doi.org/10.1021/ef800629k

    Article  CAS  Google Scholar 

  23. Subramanian, D., Wu, K., and Firoozabadi, A., Fuel, 2015, vol. 143, pp. 519‒526. https://doi.org/10.1016/j.fuel.2014.11.051

  24. Ogunlaja, A.S., Hosten, E., and Tshentu, Z.R., Ind. Eng. Chem. Res., 2014, vol. 53, no. 48, pp. 18390‒18401. https://doi.org/10.1021/ie502672q

    Article  CAS  Google Scholar 

  25. Atta, A.M., Ezzat, A.O., Abdullah, M.M., and Hashem, A.I., Energy Fuels, 2017, vol. 31, no. 8, pp. 8045‒8053. https://doi.org/10.1021/acs.energyfuels.7b01167

    Article  CAS  Google Scholar 

  26. Rashid, Z., Wilfredand, C.D., and Murugesan, T., AIP Conf. Proc., 2017, 1891, p. 020118. https://doi.org/10.1063/1.5005451

  27. Ghanem, A., Alharthy, R.D., Desouky, S.M., and El-Nagar, R.A., Materials, 2022, vol. 15, no. 4, p. 1600. https://doi.org/10.3390/ma15041600

  28. Yunus, N.M.M., Dhevarajan, S., and Wilfred, C.D., J. Mol. Liq., 2022, p. 119567. https://doi.org/10.1016/j.molliq.2022.119567

  29. Thulasiraman, S., Yunus, N.M.M., Kumar, P., Kesuma, Z.R., Norhakim, N., Wilfred, C.D., Roffi, T.M., Hamdan, M.F., and Burhanudin, Z.A., Materials, 2022, vol. 15, no. 8, p. 2818. https://doi.org/10.3390/ma15082818

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baghersaei, S., Mokhtari, B., Pourreza, N., Soulgani, B.S., Egyp. J. Pet., 2022, vol. 31, no. 3, 77–81. https://doi.org/10.1016/j.ejpe.2022.07.004

  31. Baghersaei, S., Mokhtari, B., Soulgani, B.S., Pourreza, N., and S. Veiskarami, S., Energy Fuels, 2023, vol. 37, no. 10, pp. 7085–7093. https://doi.org/10.1021/acs.energyfuels.3c00196

    Article  CAS  Google Scholar 

  32. Mardani, E., Mokhtari, B., and Soulgani, B.S., J. Pet. Res., 2017, vol. 27, no. 3, pp. 123–34. https://doi.org/10.1080/10916466.2018.1445103

  33. Mardani, E., Mokhtari, B., and Soulgani, B.S., Pet. Sci. Technol., 2018, vol. 36, no. 11, pp. 744–749. https://doi.org/10.1080/10916466.2018.1445103

    Article  CAS  Google Scholar 

  34. Vieira, J.C., Villetti, M.A., and Frizzo, C.P., J. Mol. Liq., 2021, vol. 330, p. 115618. https://doi.org/10.1016/j.molliq.2021.115618

    Article  CAS  Google Scholar 

  35. Buttry, D.A. and Ward, M.D., Chem. Rev., 1992, vol. 92, no. 6, pp. 1355‒1379. https://doi.org/10.1021/cr00014a006

    Article  CAS  Google Scholar 

  36. Asomaning, S., Pet. Sci. Technol., 2003, vol. 21, nos. 3‒4, pp. 581‒890. https://doi.org/10.1081/LFT-120018540

    Article  CAS  Google Scholar 

  37. Jokić, N.B., Straubinger, C.S., Goh, S.L.M., Herdtweck, E., Herrmann, W.A., and Kühn, F.E., Inorg. Chim. Acta, 2010, vol. 363, no. 15, pp. 4181‒4188. https://doi.org/10.1016/j.ica.2010.06.028

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Shahid Chamran University of Ahvaz (project no. 1395).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Mokhtari.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mardani, E., Mokhtari, B., Soulgani, B.S. et al. Functionalized Ionic Liquids as Asphaltene Dispersants: A Comparison between Aliphatic and Aromatic Cations. Pet. Chem. (2024). https://doi.org/10.1134/S0965544123110075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0965544123110075

Keywords:

Navigation