Skip to main content
Log in

Synthesis and Performance of a Salt-Tolerant Poly(AM/NVP/APEG/DMAAC-18) Polymer

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A salt-tolerant polymer based on hydrophobically associating water-soluble polymers of 1-vinyl-2-pyrrolidone, allyl polyethylene glycol, acrylamide, and N,N′-dimethyl octadecyl allyl ammonium chloride has been synthesized. Salt thickening and rheological performance of the polymer solutions have been studied. Polymer solutions have demonstrated an excellent uninterruptedly thickening ability within a wide range of salt concentrations. When concentrations of NaCl and CaCl2 reached 19.9 and 19.3%, the apparent viscosity of a 1% polymer solution increased to 660 and 330 mPa s, respectively. Meanwhile, polymer solutions containing high NaCl or CaCl2 concentrations showed good viscoelasticity, shear resistance, and temperature resistance. A scanning electron microscopy showed that increase in a salt concentration enhanced the hydrophobic association strength of polymer solutions and increased the density of the formed network structure, which was macroscopically manifested as a viscosity increase. The results of this study may promote the research and development of polymers resistant to extreme salt concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Dai, C.L., Zhao, G., You, Q., and Zhao, M.W., J. Appl. Polym. Sci., 2013, vol. 131, p. 39462. https://doi.org/10.1002/app.39462

    Article  CAS  Google Scholar 

  2. Yang, H.B., Shao, S., Zhu, T.Y., Chen, C., Liu, S.R., Zhou, B.B., Hou, X.Y., Zhang, Y., and Kang, W.L., J. Ind. Eng. Chem., 2019, vol. 79, pp. 295–306. https://doi.org/10.1016/j.jiec.2019.07.005

    Article  CAS  Google Scholar 

  3. Yang, H.B., Hu, L.L., Chen, C., Zhao, H., Wang, P.X., Zhu, T.Y., Wang, T.Y., Liang, Z., Fan, H.M., and Kang, W.L., J. Mol. Liq., 2020, vol. 308, p. 113081. https://doi.org/10.1016/j.molliq.2020.113081

    Article  CAS  Google Scholar 

  4. Yang, H.B., Zhou, B.B., Zhu, T.Y., Wang, P.X., Zhang, X.F., Wang, T.Y., Wu, F.P., Zhang, L., Kang, W.L., Ketova, Y.A., and Galkin, S.V., J. Pet. Sci. Eng., 2021, vol. 196, p. 107708. https://doi.org/10.1016/j.petrol.2020.107708

    Article  CAS  Google Scholar 

  5. Zhou, W., Xin, C.P., Chen, S.N., Yu, Q., and Wang, K., Energy Fuels, 2020, vol. 34, pp. 4116–4128. https://doi.org/10.1021/acs.energyfuels.9b04298

    Article  CAS  Google Scholar 

  6. Santanna, V. C., Curbelo, F.D.S., Castro Dantas, T.N., Dantas Neto, A.A., Albuquerque, H.S., and Garnica, A.I.C., J. Pet. Sci. Eng., 2009, vol. 66, pp. 117–120. https://doi.org/10.1016/j.petrol.2009.01.009

    Article  CAS  Google Scholar 

  7. Liu, H., Xiong, C.M., Tao, Z., Fan, Y.J., Tang, X.F., and Yang, H.Y., RSC Adv., 2015, vol. 5, pp. 33083–33088. https://doi.org/10.1039/c4ra15003a

    Article  CAS  Google Scholar 

  8. Zhu, Z., Kang, W.L., Yang, H.B., Wang, P.X., Zhang, X.F., Yin, X., and Lashari, Z.A., Colloid Polym. Sci., 2017, vol. 295, pp. 1887–1895. https://doi.org/10.1007/s00396-017-4169-7

    Article  CAS  Google Scholar 

  9. Ye, Z.B., Zhang, X., Chen, H., Han, L.J., Jiang, J.F., Song, J.R., and Yuan, J.Y., Colloid Polym. Sci., 2015, vol. 293, pp. 2321–2330. https://doi.org/10.1007/s00396-015-3609-5

    Article  CAS  Google Scholar 

  10. Li, X.E., Xu, Z., Yin, H.Y., Feng, Y.J., and Quan, H.P., Energy Fuels, 2017, vol. 31, pp. 2479–2487. https://doi.org/10.1021/acs.energyfuels.6b02653

    Article  CAS  Google Scholar 

  11. Spildo, K. and Sae, E.I.O., Energy Fuels, 2015, vol. 29, pp. 5609–5617. https://doi.org/10.1021/acs.energyfuels.5b01066

    Article  CAS  Google Scholar 

  12. Samanta, A., Bera, A., Ojha, K., and Mandal, A., J. Chem. Eng. Data, 2010, vol. 55, pp. 4315–4322. https://doi.org/10.1021/je100458a

    Article  CAS  Google Scholar 

  13. Liu, L., Gou, S.H., Zhang, H.C., Zhou, L.H., Tang, L., and Liu, L., New J. Chem., 2020, vol. 44, pp. 9703–9711. https://doi.org/10.1039/d0nj01687j

    Article  CAS  Google Scholar 

  14. Wu, G., Yu, L.M., and Jiang, X.H., Adv. Polym. Technol., 2018, vol. 37, pp. 2763–2773. https://doi.org/10.1002/adv.21949

    Article  CAS  Google Scholar 

  15. Kang, W.L., Zhang, H.W., Lu, Y., Yang, H.B., Zhu, T.Y., Zhang, X.F., Chen, C., Sarsenbekuly, B., and Ospanova, Z.B., J. Mol. Liq., 2019, vol. 296, p. 111792. https://doi.org/10.1016/j.molliq.2019.111792

    Article  CAS  Google Scholar 

  16. Tian, S.J., Gao, W., Liu, Y.J., and Kang, W.L., Colloids Surf. A: Physicochem. Eng. Asp., 2019, vol. 572, pp. 299–306. https://doi.org/10.1016/j.colsurfa.2019.04.017

    Article  CAS  Google Scholar 

  17. Wang, D.P., Tan, J.W., Han, Y.H., Guo, Y.M., and An, H.Y., J. Macromol. Sci. A, 2019, vol. 56, pp. 1148–1155. https://doi.org/10.1080/10601325.2019.1664912

    Article  CAS  Google Scholar 

  18. Li, X.X., Sarsenbekuly, B., Yang, H.B., Huang, Z.T., Jiang, H.Z., Kang, X., Li, M.L., Kang, W.L., and Luo, P., Phys. Fluids, 2020, vol. 32, p. 073105. https://doi.org/10.1063/5.0018211

    Article  CAS  Google Scholar 

  19. Witten, T.A. and Cohen, M.H., Macromolecules, 1985, vol. 18, pp. 1915–1918. https://doi.org/10.1021/ma00152a019

    Article  CAS  Google Scholar 

  20. Chang, Y.H. and McCormick, C.L., Polymer, 1994, vol. 35, pp. 3503–3512. https://doi.org/10.1016/0032-3861(94)90916-4

    Article  CAS  Google Scholar 

  21. Dai, Y.H., Wu, F.P., Li, M.Z., and Wang, E.J., Front. Mater. Sci. China, 2008, vol. 2, pp. 113–118. https://doi.org/10.1007/s11706-008-0020-x

    Article  Google Scholar 

  22. Feng, Y.J., Billon, L., Grassl, B., Bastiat, G., Borisov, O., and François, J., Polymer, 2005, vol. 46, pp. 9283–9295. https://doi.org/10.1016/j.polymer.2005.07.054

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Talent Introduction Foundation of the Sichuan University of Science and Engineering (project nos. 2020RC04, 2020RC05), and the Opening Foundation of the State Key Laboratory of Molecular Engineering of Polymers (FuDan University; project nos. K2022-17, K2020-24).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiyang Tian or Xiaoping Qin.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, H., Zheng, J., Peng, T. et al. Synthesis and Performance of a Salt-Tolerant Poly(AM/NVP/APEG/DMAAC-18) Polymer. Pet. Chem. 63, 1365–1372 (2023). https://doi.org/10.1134/S096554412311004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554412311004X

Keywords:

Navigation