Skip to main content
Log in

Research Progress on New Highly Efficient Foam Drainage Agents for Gas Wells (A Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

This paper reviews the research background and significance of foam drainage agents, foaming and foam stability mechanisms, and analyzes the advantages and drawbacks of conventional foam drainage agents. With the development of natural gas applications, the exploitation of gas fields becomes more stringent. A new type of foam drainage agent characterized by a wide applicability should be developed based on the particular needs of gas wells. A new foam drainage agent not only resolves the deficiency of conventional foam drainage agents, but also deals with the problem of high costs. It has a higher foam stability and provides a standard for the further design of special conventional and unconventional foam drainage agents for gas fields. Moreover, the polymer addition dramatically improves the performance of foam drainage agents. A Gemini surfactant opens up a new possibility for foam drainage agents. The use of nanoparticles provides the further enhancement of the foam stability for different types of gas reservoirs. The future application trends for foam drainage agents are also discussed. A low-cost and environmentally friendly natural gas promoting a low-carbon green energy, should be developed and used. Highly efficient, environmentally-friendly and recyclable low-cost foam drainage agents would become a hotly debated research point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Yue, Q.C., IOP Conf. Ser.: Earth Environ., 2018, vol. 153, no. 3, p. 032001. https://doi.org/10.1088/1755-1315/153/3/032001

    Article  Google Scholar 

  2. Xiong, W., Zhang, S.L., Wang, L., Zhang, L.N.X., Ma, J., Zeng, K., Tian, J., Wang, M., Li, R., Jing, Z., Wang, Q., Zhu, T., Wang, L., Liu, J., Hao, L., Xu, S., and Duan, R., J. Phys.: Conf. Ser., 1983, p. 012036. https://doi.org/10.1088/1742-6596/1983/1/012036

  3. Yang, S.R., Xu, D., Liu, L.L., Duan, C., and Xiu, L.Q., Open J. Fluid Dyn., 2014, vol. 4, pp. 154–162. https://doi.org/10.4236/ojfd.2014.42014

  4. Bowman, C.W. and Collins, J.A., SPE Int. Oilfield Corrosion Symp., May 30, 2006, Aberdeen, UK, Aberdeen, Scotland, Paper no. SPE-100514-MS. https://doi.org/10.2118/100514-MS

  5. Wang, J., Zhou, F.J., Xue, Y.P., Yao, E.D., Zhang, L., Fan, F., and Wang, R., Pet. Sci. Technol., 2019, vol. 37, no. 12, pp. 1436–1454. https://doi.org/10.1080/10916466.2019.1590402

    Article  CAS  Google Scholar 

  6. Chen, M., Sun, J., Gao, E., and Tian, H.N., IOP Conf. Ser.: Earth Environ. Sci., 2021, vol. 621, p. 012113. https://doi.org/10.1088/1755-1315/621/1/012113

    Article  Google Scholar 

  7. Xiong, C.M., Gao, G.Q., Zhang, J.J., Nan, L., Xu, W.L., Wu, J.W., Li, J., and Zhang, N., Pet. Explor. Dev., 2019, vol. 46, no. 5, pp. 1022–1030. https://doi.org/10.1016/S1876-3804(19)60259-4

  8. Wang, H.B., Liu, J., Yang, Q., Wang, Y., Li, S.Y., Sun, S.Q., and Hu, S.Q., Chem. Eng. Sci., 2021, vol. 231, p. 116279. https://doi.org/10.1016/j.ces.2020.116279

    Article  CAS  Google Scholar 

  9. Tavakkoli, M., Panuganti, S.R., Khemka, Y., Valdes, H., and Vargas, F.M., J. Petrol. Sci. Eng., 2021, vol. 201, p. 108496. https://doi.org/10.1016/j.petrol.2021.108496

    Article  CAS  Google Scholar 

  10. Farina, L., Passucci, C., Lullo, A.D., Negri, E., Anderson, S., and Page, S., SPE Annual Technical Conf. and Exhibition, October 8–10, 2012, San Antonio, Texas, USA. https://doi.org/10.2118/160282-MS

  11. Lee, Y., Baek, K.H., Choe, K., and Han, C., Cryogenics, 2016, vol. 80, no. 1, pp. 44–51. https://doi.org/10.1016/j.cryogenics.2016.09.002

    Article  ADS  CAS  Google Scholar 

  12. Hajimohammadi, A., Ngo, T., and Mendis, P., Cem. Concr. Compos., 2017, vol. 80, pp. 277–286. https://doi.org/10.1016/j.cemconcomp.2017.03.022

    Article  CAS  Google Scholar 

  13. Farag, A., Robertson, T., Kerem, M., and Montero, J., SPE Middle East Artificial Lift Conf. and Exhibition, Nov. 30–Dec. 1, 2016, Manama, Kingdom of Bahrain. https://doi.org/10.2118/184217-ms

  14. Anestopoulos, I., Kiousi, D.E., Klavaris, A., Galanis, A., Salek, K., Euston, S.R., Pappa, A., and Panayiotidis, M.I., Pharmaceutics, 2020, vol. 12, p. 688. https://doi.org/10.3390/pharmaceutics12070688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu, X.Y., Li, Y., He, X.J., Li, C.X., Li, Z.Q., Cao, X.L., Xin, X., and Somasundaran, P., J. Phys. Chem. B., 2011, vol. 116, p. 160–167. https://doi.org/10.1021/jp205753w

    Article  CAS  PubMed  Google Scholar 

  16. Kurrey, R., Mahilang, M., Deb, M.K., and Shrivas, K., Trends Environ. Anal. Chem., 2019, vol. 21, p. e00061. https://doi.org/10.1016/j.teac.2019.e00061

  17. Adebayo, A.R., J. Nat. Gas Sci. Eng., 2019, vol. 62, pp. 1–12. https://doi.org/10.1016/j.jngse.2018.11.024

    Article  CAS  Google Scholar 

  18. Mansour, F.R., Arrua, R.D., Desire, C.T., and Hilder, E.F., Anal. Chem., 2017, vol. 93, pp. 2802–2810. https://doi.org/10.1021/acs.analchem.0c03889

    Article  CAS  Google Scholar 

  19. Pandey, S., Bagwe, R. P., and Shah, D.O., J. Colloid Interface Sci., 2003, vol. 267, pp. 160–166. https://doi.org/10.1016/j.jcis.2003.06.001

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Wu, J.W., Jia, W.F., Zhang, R.S., Cen, X.Q., Wang, H., and Niu, J., SPE Int. Conf. on Oilfield Chemistry, April 8–9, 2019. Galveston, Texas, USA. https://doi.org/10.2118/193572-MS

  21. Madhu, H.C. and Kailas, S.V., Mater. Charact., 2018, vol. 142, pp. 340–351. https://doi.org/10.1016/j.matchar.2018.05.059

    Article  CAS  Google Scholar 

  22. Xu, L., Rad, M.D., Telmadarreie, A., Qian, C., Liu, C.G., Bryant, S. L., and Dong, M.Z., Colloids Surf. A: Physicochem. Eng. Asp., 2018, vol. 550, pp. 176–185. https://doi.org/10.1016/j.colsurfa.2018.04.046

  23. Gao, F.F., Liu, G.K., and Yuan, S.L., Appl. Surf. Sci., 2017, vol. 407, pp. 156–161. https://doi.org/10.1016/j.apsusc.2017.02.087

    Article  ADS  CAS  Google Scholar 

  24. Solesa, M. and Sevic, S., SPE Russ. Oil and Gas Technical Conf. and Exhibition, 2006. https://doi.org/10.2118/101276-RU

  25. Kadijani, J.A. and Narimani, E., Appl. Petrochem. Res., 2016, vol. 6, pp. 25–34. https://doi.org/10.1007/s13203-015-0107-0

    Article  Google Scholar 

  26. Zhang, C.X., Wang, Z.Y., Li, J., and Xiong, Z.G., Proc. of the 2015 4th Int. Conf. on Sensors, Measurement and Intelligent Materials, 2016. https://doi.org/10.2991/icsmim-15.2016.150

  27. Liu, E.H., Appl. Mech. Mater., 2014, vols. 672–674, pp.700–703. https://doi.org/10.4028/www.scientific.net/AMM.672-674.700

    Article  ADS  CAS  Google Scholar 

  28. Maini, B.B. and Ma, V., J. Can. Pet. Technol., 1986, vol. 25, no. 6, pp. PETSOC-85-36-30. https://doi.org/10.2118/86-06-05

  29. Zhang, Q., Wei, X.L., Liu, J., Sun, D.Z., Zhang, X.X., Zhang, C., and Liu, J.F., J. Surfactants Deterg., 2012, vol. 15, pp. 613–621. https://doi.org/10.1007/s11743-012-1342-3

    Article  CAS  Google Scholar 

  30. Nakayama, S., Yusa, S., Nakamura, Y., and Fujii, S., Soft Matter, 2015, vol. 11, no. 47, pp. 9099–9106. https://doi.org/10.1039/c5sm02187a

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Yang, K., Li, S., Zhang, K., and Wang, Y., Fuel, 2021, vol. 288, p. 119624. https://doi.org/10.1016/j.fuel.2020.119624

    Article  CAS  Google Scholar 

  32. Feng, J.J., Yan, Z.H., Song, J.M., He, J., Zhao, G., and Fan, H.M., Chem. Eng. Sci., 2021, vol. 245, p. 116857. https://doi.org/10.1016/j.ces.2021.116857

    Article  CAS  Google Scholar 

  33. Azdarpour, A., Rahmani, O., Mohammadian, E., Parak, M., Daud, A.R.M., and Junin, R., 2013 IEEE Business Engineering and Industrial Applications Colloquium (BEIAC), 2013, pp. 97–102. https://doi.org/10.1109/BEIAC.2013.6560275

  34. Sun, Y.G., Li, Y.P., Li, C.X., Zhang, D.R., Cao, X.L., Song, X.W., Wang, Q.W., and Li, Y., Colloids Surf. A: Physicochem. Eng. Asp., 2015, vol. 480, pp. 138–148. https://doi.org/10.1016/j.colsurfa.2015.02.042

    Article  CAS  Google Scholar 

  35. Lai, L.D., Zhang, T.L., and Zheng, C.C., Colloids Surf. A: Physicochem. Eng. Asp., 2023, vol. 657, pp. 998–1004. https://doi.org/10.1016/j.colsurfa.2022.130607

    Article  CAS  Google Scholar 

  36. Zhao, L., Li, A.F., Chen, K., Tang, J.J., and Fu, S.S., J. Petrol. Sci. Eng., 2012, vol. 81, pp. 18–23. https://doi.org/10.1016/j.petrol.2011.11.006

    Article  CAS  Google Scholar 

  37. Fukui, S., Hirai, T., Nakamura, Y., and Fujii, S., Polymers, 2020, vol. 12, p. 511. https://doi.org/10.3390/polym12030511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ito, M., Takano, K., Hanochi, H., Asaumi, Y., Yusa, S., Nakamura, Y., and Fujii, S., Front. Chem., 2018, July 17. https://doi.org/10.3389/fchem.2018.00269

  39. Wang, H.T., Li, J., Wang, Z., Wang, D.M., and Zhan, H.H., J. Surfact. Deterg., 2017, vol. 20, pp. 1443–1451. https://doi.org/10.1007/s11743-017-2004-2

    Article  CAS  Google Scholar 

  40. Gieg, L.M., Duncan, K.E., and Suflita, J.M., Appl. Environ. Microbiol., 2008, vol. 74, pp. 3022–3029. https://doi.org/10.1128/aem.00119-08

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alvarado, V. and Manrique, E., Energies, 2010, vol. 3, no. 9, pp. 1529–1575. https://doi.org/10.3390/en3091529

    Article  Google Scholar 

  42. Osei-Bonsu, K., Shokri, N., and Grassia, P., Colloids Surf. A: Physicochem. Eng. Asp., 2015, vol. 481, pp. 514–526. https://doi.org/10.1016/j.colsurfa.2015.06.023

    Article  CAS  Google Scholar 

  43. Chen, S.Y., Hou, Q.F., Zhu, Y.Y., Li, W.J., and Chang, Z.D., Adv. Mat. Res., 2013, vol. 803, pp. 85–89. https://doi.org/10.4028/www.scientific.net/AMR.803.85

    Article  CAS  Google Scholar 

  44. Simjoo, M., Rezaei, T., Andrianov, A., and Zitha, P.L.J., Colloids Surf. A: Physicochem. Eng. Asp., 2013, vol. 438, pp. 148–158. https://doi.org/10.1016/j.colsurfa.2013.05.062

    Article  CAS  Google Scholar 

  45. Lee, J., Nikolov, A., and Wasan, D., J. Colloid Interface Sci., 2014, vol. 415, pp. 18–25. https://doi.org/10.1016/j.jcis.2013.10.014

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Xu, R. and Yang, L., SPE Int. Symp. on Oilfield Chemistry, 1995, San Antonio, Texas. https://doi.org/10.2118/29004-MS

  47. Qiao, S.Y., Liu, Q.W., Fan, Z.Z., Wang, J.G., and Xu, J.J., IOP Conf. Ser.: Earth Environ. Sci., 2017, vol. 64, p. 012025. https://doi.org/10.1088/1755-1315/64/1/012025

    Article  Google Scholar 

  48. Yang, J., Jovancicevic, V., and Ramachandran, S., Colloids Surf. A: Physicochem. Eng. Asp., 2007, vol. 309, pp. 177–181. https://doi.org/10.1016/j.colsurfa.2006.10.011

    Article  CAS  Google Scholar 

  49. Xu, X., Saeedi, A., and Liu, K., J. Petrol. Sci. Eng., 2015, vol. 138, pp. 153–159. https://doi.org/10.1016/j.petrol.2015.10.025

    Article  CAS  Google Scholar 

  50. Wu, G., Zhu, Q.Q., Yuan, C.T., Wang, H.B., Li, C.L., Sun, S.Q., Hu, S.Q., Chem. Eng. Sci., 2017, vol. 166, pp. 313–319. https://doi.org/10.1016/j.ces.2017.03.011

    Article  CAS  Google Scholar 

  51. Ma, J.Z., Gao, J.J., Wang, H.D., Lyu, B., and Gao, D.G., ACS Sustain. Chem. Eng., 2017, vol. 5, no. 11, pp. 10693–10701. https://doi.org/10.1021/acssuschemeng.7b02662

    Article  CAS  Google Scholar 

  52. Hassan, M., Al-Hazmi, S.M., Alhagri, I.A., Alhakimi, A.N., Dahadha, A.A., Al-Dhoun, M., and Batineh, Y., Asian J. Chem., 2021, vol. 33, no. 7, pp. 1471–1480. https://doi.org/10.14233/ajchem.2021.23187

    Article  CAS  Google Scholar 

  53. Lu, H.S., He, Y., and Huang, Z.Y., Tenside Surfact. Det., 2014, vol. 51, no. 5, pp. 415–420. https://doi.org/10.3139/113.110323

    Article  CAS  Google Scholar 

  54. Qi, H., Bai, Z.G., Zhang, Q.Z., and Lai, X.J., Tenside Surfact. Det., 2018, vol. 55, no. 2, pp. 142–147. https://doi.org/10.3139/113.110551

    Article  CAS  Google Scholar 

  55. Worthen, A.J., Bryant, S.L., Huh, C., and Johnston, K.P., AIChE J., 2013, vol. 59, no. 9, pp. 3490–3501. https://doi.org/10.1002/aic.14124

    Article  ADS  CAS  Google Scholar 

  56. Latif, W.M.S.M., Sharbini, S.N., Wan Sulaiman, W.R., and Idris, A.K., IOP Conf. Series: Materials Science and Engineering, 2019, vol. 469, p. 012027. https://doi.org/10.1088/1757-899X/469/1/012027

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. P. Zhang.

Ethics declarations

The authors declare that they have no conflict of interest requiring the disclosure in this article.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y.Q., Zhang, Y.P., Liu, Q.W. et al. Research Progress on New Highly Efficient Foam Drainage Agents for Gas Wells (A Review). Pet. Chem. 63, 1119–1131 (2023). https://doi.org/10.1134/S0965544123080029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123080029

Keywords:

Navigation