Skip to main content
Log in

Effects of Inorganic Salts and Polymers on the Foam Performance of 1-Tetradecyl-3-methylimidazolium Bromide Aqueous Solution

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The foaming performance of 1-tetradecyl-3-methylimidazolium bromide (C14mimBr) aqueous solution, in the presence of polymers (PEG or PVA) or inorganic salts (NaBr, MgCl2, NaNO3, Na2SO4 or Na3PO4), was investigated at 25.0 °C by using the self-made apparatus and the conductivity method. The experimental results show that the foaming ability and foam stability of the ternary aqueous systems of C14mimBr coexisting with PEG or PVA are stronger than those of the C14mimBr solutions in the absence of a polymer, and both the efficiency of foaming ability and foam stability of the surfactant solutions are evidently enhanced with an increase in polymer concentration. However, the addition of inorganic salts can decrease the foaming ability and foam stability of C14mimBr solution. Especially, the inorganic salts, with high valence state of the anion (SO4 2− and PO4 3−), are good antifoam agents which can remove and inhibit foam quickly. For the aqueous solution of the surfactant, the effect of temperature on foaming properties was also examined. The results show that both the foaming ability and stability of the foams of the surfactant solutions decrease with an increase in the temperature within the range from 25.0 to 45.0 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Clark JH (1998) Challenges and opportunities. Green Chem 1:1–8

    Article  Google Scholar 

  2. Rogers R, Seddon K (2003) Ionic liquids-solvents of the future. Science 302:792–793

    Article  Google Scholar 

  3. Firestone MA, Dzielawa JA, Zapol P, Curtiss LA, Seifert S, Dietz ML (2002) Lyotropic liquid-crystalline gel formation in a room-temperature ionic liquid. Langmuir 18:7258–7260

    Article  CAS  Google Scholar 

  4. Wang JJ, Wang HY, Zhang SL, Zhang HC, Zhao Y (2007) Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim][BF4] and [C n mim]Br (n = 4, 6, 8, 10, 12) in aqueous solutions. J Phys Chem B 111:6181–6188

    Article  CAS  Google Scholar 

  5. Jungnickel C, Łuczak J, Ranke J, Fernández JF, Müller A, Thöming J (2008) Micelle formation of imidazolium ionic liquids in aqueous solution. Colloids Surf A 316:278–284

    Article  CAS  Google Scholar 

  6. Goodchild I, Collier L, Millar SL, Prokeš I, Lord JCD, Butts CP, Bowers J, Webster JRP, Heenan RK (2007) Structural studies of the phase, aggregation and surface behavior of 1-alkyl-3-methylimidazolium halide + water mixtures. J Colloid Interface Sci 307:455–468

    Article  CAS  Google Scholar 

  7. Vanyúr R, Biczók L, Miskolczy Z (2007) Micelle formation of 1-alkyl-3-methylimidazolium bromide ionic liquids in aqueous solution. Colloids Surf A 299:256–261

    Article  Google Scholar 

  8. Geng F, Liu J, Zheng LQ, Yu L, Li Z, Li GZ, Tung CH (2010) Micelle formation of long-chain imidazolium ionic liquids in aqueous solution measured by isothermal titration microcalorimetry. J Chem Eng Data 55:147–151

    Article  CAS  Google Scholar 

  9. Kang WP, Dong B, Gao YA, Zheng LQ (2010) Aggregation behavior of long chain imidazolium ionic liquid in ethylammonium nitrate. Colloid Polym Sci 288:1225–1232

    Article  CAS  Google Scholar 

  10. Inoue T, Ebina H, Dong B, Zheng LQ (2007) Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution. J Colloid Interface Sci 314:236–241

    Article  CAS  Google Scholar 

  11. Dong B, Zhang J, Zheng LQ, Wang SQ, Li XW, Inoue T (2008) Salt-induced viscoelastic wormlike micelles formed in surface active ionic liquid aqueous solution. J Colloid Interface Sci 319:338–343

    Article  CAS  Google Scholar 

  12. Liu J, Dong B, Sun DZ, Wei XL, Wang SN, Zheng LQ (2011) Enthalpy measurements for the formation of salt-induced wormlike micelles using isothermal titration microcalorimetry. Colloids Surf A 380:308–313

    Article  CAS  Google Scholar 

  13. Geng F, Zheng LQ, Liu J, Yu L, Tung CH (2009) Interactions between a surface active imidazolium ionic liquid and BSA. Colloid Polym Sci 287:1253–1259

    Article  CAS  Google Scholar 

  14. Liu J, Zheng LQ, Sun DZ, Wei XL (2010) Salt effect on the complex formation between 1-dodecyl-3-methylimidazolium bromide and sodium carboxymethylcellulose in aqueous solution. Colloids Surf A 358:93–100

    Article  CAS  Google Scholar 

  15. Wu W, Hettiarachchy NS (1998) Foaming and emulsifying properties of soy protein isolate and hydrolysates in skin and hair care products. J Surf Deterg 1:241–246

    Article  CAS  Google Scholar 

  16. Rouimi S, Schorsch C, Valentini C, Vaslin S (2005) Foam stability and interfacial properties of milk protein-surfactant systems. Food Hydrocoll 19:467–478

    Article  CAS  Google Scholar 

  17. Sawicki GC (2005) Impact of surfactant composition and surfactant structure on foam control performance. Colloids Surf A 263:226–232

    Article  CAS  Google Scholar 

  18. Chen YF, Yang CH, Chang MS, Ciou YP, Huang YC (2010) Foam properties and detergent abilities of the saponins from camellia oleifera. Int J Mol Sci 11:4417–4425

    Article  CAS  Google Scholar 

  19. Aidarova SB, Musabekov KB, Ospanova ZB, Guden M (2006) Foaming binary solution mixtures of low molecular surfactant and polyelectrolyte. J Mater Sci 41:3979–3986

    Article  CAS  Google Scholar 

  20. Yalçin E, Çelik S, Ibanoglu E (2008) Foaming properties of barley protein isolates and hydrolysates. Eur Food Res Technol 226:967–974

    Article  Google Scholar 

  21. Exerowa D, Kruglyakov PM (1998) Foam and foam films: theory, experiment, application, Chap. 10. Elsevier, Amsterdam, pp 656–737

  22. Rubin AJ, Lapp WL (1969) Foam separation of lead(II) with sodium lauryl sulfate. Anal Chem 41:1133–1135

    Article  CAS  Google Scholar 

  23. Pugh RJ (1996) Foaming, foam films, antifoaming and defoaming. Adv Colloid Interface Sci 64:67–142

    Article  CAS  Google Scholar 

  24. Aksay S, Mazza G (2007) Optimization of protein recovery by foam separation using response surface methodology. J Food Eng 79:598–606

    Article  CAS  Google Scholar 

  25. Exerowa D, Kruglyakov PM (1998) Foam and foam films: theory, experiment, application, Chap. 7. Elsevier, Amsterdam, pp 502–570

  26. Arnaudov L, Denkov ND, Surcheva I, Durbut P, Broze G, Mehreteab A (2001) Effect of oily additives on foamability and foam stability. 1. Role of interfacial properties. Langmuir 17:6999–7010

    Article  CAS  Google Scholar 

  27. Hadjiiski A, Tcholakova S, Denkov ND, Durbut P, Broze G, Mehreteab A (2001) Effect of oily additives on foamability and foam stability. 2. Entry barriers. Langmuir 17:7011–7021

    Article  CAS  Google Scholar 

  28. Liu J, Xu GY, Yuan SL, Jiang P (2003) The effect of macromolecules on foam stability in sodium dodecyl sulfate/cetylpyridinium bromide mixtures. J Dispers Sci Technol 24:779–787

    Article  Google Scholar 

  29. Dong B, Li N, Zheng LQ, Yu L, Inoue T (2007) Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution. Langmuir 23:4178–4182

    Article  CAS  Google Scholar 

  30. Dupont J, Consorti CS, Suarez PAZ, de Souza RF, Fulmer SL, Richardson DP, Smith TE, Wolff S (2002) Preparation of 1-butyl-3-methylimidazoline based room temperature ionic liquids. Org Synth 79:236–240

    CAS  Google Scholar 

  31. Wei XL, Fu SZ, Liu J, Yin BL, Sun DZ (2008) Research of foam performance of 3-dodecyloxy-2-hydroxypropyl trimethylammonium bromide and its complex systems. J Solution Chem 37:403–412

    Article  CAS  Google Scholar 

  32. Fu SZ, Yin BL, Wei XL, Sun DZ (2007) The influences of polymers and temperature on the foam properties of 3-dodecylalkoxyl-2-hydroxypropyl trimethylammonium chloride. J Dispers Sci Technol 28:1112–1116

    Article  CAS  Google Scholar 

  33. Jones MN (1967) The interaction of sodium dodecyl sulfate with polyethylene oxide. J Colloid Interface Sci 23:36–42

    Article  CAS  Google Scholar 

  34. Taylor DJF, Thomas RK, Penfold J (2007) Polymer/surfactant interactions at the air/water interface. Adv Colloid Interface Sci 132:69–110

    Article  CAS  Google Scholar 

  35. Wang C, Tam KC, Jenkins RD, Tan CB (2003) Interactions between methacrylic acid/ethyl copolymers and dodecyltrimethylammonium bromide. J Phys Chem B 107:4667–4675

    Article  CAS  Google Scholar 

  36. Bai GY, Santos L, Nichifor M, Lopes A, Bastos M (2004) Thermodynamics of the interaction between a hydrophobically modified polyelectrolyte and sodium dodecyl sulfate in aqueous solution. J Phys Chem B 108:405–413

    Article  CAS  Google Scholar 

  37. Niemiec A, Loh W (2008) Interaction of ethylene oxide – propylene oxide copolymers with ionic surfactants studied by calorimetry: random versus block copolymers. J Phys Chem B 112:727–733

    Article  CAS  Google Scholar 

  38. Chu DY, Thomas JK (1986) Effect of cationic surfactants on the conformation transition of poly(methacrylic acid). J Am Chem Soc 108:6270–6276

    Article  CAS  Google Scholar 

  39. Zhao GX (1984) Physical chemistry of surfactant. Beijing Univ Publ Beijing 296:408–426

    Google Scholar 

  40. Luo TT, Cheng L, Li ST, Yang L (2006) Study on influence of surfactants upon viscosity of polyvinyl alcohol water solution. J Chem Ind Eng 27:15–17

    CAS  Google Scholar 

  41. Zhao XG, Zhang F, Peng J, Geng J, Zhang ZB (2007) Marangoni effect of cracked liquid film of an aqueous electrolyte flowing over a vertical heated plate. Chin Sci Bull 52:2887–2891

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was generously supported by the National Natural Science Foundation of China (Grant No. 21073081, 21171084, 2011CBA00701), Shandong Tai-Shan Scholar Research Fund and Innovational Program for Graduate Education of Shandong Province (SDYC10044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilian Wei.

About this article

Cite this article

Zhang, Q., Wei, X., Liu, J. et al. Effects of Inorganic Salts and Polymers on the Foam Performance of 1-Tetradecyl-3-methylimidazolium Bromide Aqueous Solution. J Surfact Deterg 15, 613–621 (2012). https://doi.org/10.1007/s11743-012-1342-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-012-1342-3

Keywords

Navigation