Skip to main content
Log in

Prediction of Asphaltene Precipitation Envelope (APE) Using Empirical Equations and Equation of State Model

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The aim of this research study is to estimate asphaltene precipitation envelope (APE) using empirical equations and equation of state model. It was found that empirical model are unreliable because model completely failed to predict reasonable results when crude oil samples are used having composition and properties not coming within data set range that was used in the development of empirical equations. Moreover, there is also an uncertainty in the model accuracy exists even for those oil samples having composition and properties within applicability range of empirical equations. On the other hand, equation of state (EOS) model was found to develop appropriate asphaltene precipitation envelope for all crude oil samples used with high to moderate accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ashoori, S., Sharifi, M., Masoumi, M., and Salehi, M.M., Egypt. J. Pet., 2017, vol. 26, pp. 209–213. https://doi.org/10.1016/j.ejpe.2016.04.002

    Article  Google Scholar 

  2. Fakher, S., Ahdaya, M., Elturki, M., and Imqam, A., J. Petrol. Explor. Prod. Technol., 2020, vol. 10, pp. 1183–1200. https://doi.org/10.1007/s13202-019-00811-5

    Article  CAS  Google Scholar 

  3. Boussingault, J.B., Ann. Chim. 1837, vol. 64, pp. 113–141.

  4. Dehaghani, A.H.S. and Badizad, M.H., Fluid Phase Equilibria, 2017, vol. 442, pp. 104–118. https://doi.org/10.1016/j.fluid.2017.03.020

  5. Gharbi, K., Benyounes, K., and Khodja, M., J. Pet. Sci. Eng., 2017, vol. 158, pp. 351–360. https://doi.org/10.1016/j.petrol.2017.08.062

    Article  CAS  Google Scholar 

  6. Alimohammadi, S., Zendehboudi, S., and James, L., Fuel, 2019, vol. 252, pp. 753–791. https://doi.org/10.1016/j.fuel.2019.03.016

    Article  CAS  Google Scholar 

  7. Melendez-Alvarez, A.A., M. Garcia-Bermudes, Tavakkoli, M., Doherty, R.H., Meng, S., Abdallah, D.S., and Vargas, F.M., Fuel, 2016, vol. 179, pp. 210–220. https://doi.org/10.1016/j.fuel.2016.03.056

    Article  CAS  Google Scholar 

  8. Shoukry, A.E., ElBanbi, A.H., and Sayyouh, H., Pet. Sci., 2020, vol. 17, pp. 232–241. https://doi.org/10.1007/s12182-019-00377-1

    Article  CAS  Google Scholar 

  9. Tabzar, A., Fathinasab, M., Salehi, A., Bahrami, B., and Mohammadi, A.H., Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles, 2018, vol. 73, Art. 51. https://doi.org/10.2516/ogst/2018039

  10. Akbarzadeh, K., Hammami, A., Kharrat, A., Zhang, D., Allenson, S., Creek, J., Kabir, S., Jamaluddin, A., Marshall, A.G., Rodgers, R.P., Mullins, O.C., and Solbakken, T., Oilfield Rev., 2007, vol. 19, pp. 22–43.

    CAS  Google Scholar 

  11. Mullins, O.C., Sheu, E.Y., Hammami, A., and Marshall, A.G., Asphaltenes, Heavy Oils, and Petroleomics, New York: Springer, 2007. https://doi.org/10.1007/0-387-68903-6

  12. Abutaqiya, M.I.L., Sisco, C.J., and Vargas, F.M., Fluid Phase Equilibria, 2019, vol. 483, pp. 52–69. https://doi.org/10.1016/j.fluid.2018.10.025

    Article  CAS  Google Scholar 

  13. Hammami, A., Phelps, C.H., Monger-McClure, T., and Little, T.M., Energy Fuels, 2000, vol. 14, pp. 14–18. https://doi.org/10.1021/ef990104z

    Article  CAS  Google Scholar 

  14. Karan, K., Hammami, A., Flannery, M., and Stankiewicz, B.A., Petrol. Sci. Technol., 2003, vol. 21, pp. 629–645. https://doi.org/10.1081/LFT-120018543

    Article  CAS  Google Scholar 

  15. Soleymanzadeh, A., Yousefi, M., Kord, S., and Mohammadzadeh, O., J. Petrol. Explor. Prod. Technol., 2019, vol. 9, pp. 1375–1396. https://doi.org/10.1007/s13202-018-0533-5

    Article  Google Scholar 

  16. Firoozinia, H., Abad, K.F.H., and Varamesh, A., Pet. Sci., 2016, vol. 13, pp. 280–291. https://doi.org/10.1007/s12182-016-0078-5

    Article  CAS  Google Scholar 

  17. Dolati, S., Zarei, H., and Kharrat, R., J. Dispers. Sci. Technol., 2015, vol. 36, pp. 103–110. https://doi.org/10.1080/01932691.2014.881261

    Article  CAS  Google Scholar 

  18. Yonebayashi, H., Urasaki, D., and Uetani, T., Energy Fuels, 2017, vol. 31, pp. 3358–3369. https://doi.org/10.1021/acs.energyfuels.6b02152

    Article  CAS  Google Scholar 

  19. Yonebayashi, H., Miyagawa, Y., Ikarashi, M., Watanabe, T., Maeda, H., and Yazawa, N., SPE Prod. & Oper., 2018, vol. 33, pp. 486–497. https://doi.org/10.2118/181278-PA

    Article  CAS  Google Scholar 

  20. Subramanian, S., Simon, S., and Sjöblom, J., J. Dispers. Sci. Technol., 2016, vol. 37, pp. 1027–1049. https://doi.org/10.1080/01932691.2015.1065418

    Article  CAS  Google Scholar 

  21. Flory, P.J., J. Chem. Phys., 1942, vol. 10, pp. 51–61. https://doi.org/10.1063/1.1723621

    Article  CAS  Google Scholar 

  22. Hirscberg, A., DeJong, L.N.J., Schipper, B.A., and Meijer, J.G., SPE J., 1984, vol. 24, pp. 283–293. https://doi.org/10.2118/11202-PA

    Article  Google Scholar 

  23. Zendehboudi, S., Shafiei, A., Bahadori, A., James, L.A., Elkamel, A., and Lohi, A., Chem. Eng. Res. Des., 2014, vol. 92, pp. 857–875. https://doi.org/10.1016/j.cherd.2013.08.001

    Article  CAS  Google Scholar 

  24. Burke, N.E., Hobbs, R.D., and Kashou, S.F., J. Pet. Technol., 1990, vol. 42, pp. 1440–1446. https://doi.org/10.2118/18273-PA

    Article  CAS  Google Scholar 

  25. Novosad, Z. and Costain, T.G., Abstracts of Papers, 65th SPE Ann. Tech. Conf. and Exh., 23–28 September, New Orleans, LA, 1990. https://doi.org/10.2118/20530-MS

  26. Kokal, S.L., Najman, J., Sayegh, S.G., and George, A.E., J. Can. Pet. Technol., 1992, vol. 31, no. 04, Paper no. PETSOC-92-04-01. https://doi.org/10.2118/92-04-01

  27. Leontaritis, K.J. and Mansoori, G.A., Abstracts of Papers, SPE Int. Symp. Oil Field Chem., 4–5 February 1987, San Antonio, Texas, USA (1987). https://doi.org/10.2118/16258-MS

  28. Victorov, A.I. and Firoozabadi, A., AIChE J., 1996, vol. 42, pp. 1753–1764. https://doi.org/10.1002/aic.690420626

    Article  CAS  Google Scholar 

  29. Ameli, F., Hemmati-Sarapardeh, A., Dabir, B., and Mohammadi, A.H., Fluid Phase Equilibria, 2016, vol. 412, pp. 235–248. https://doi.org/10.1016/j.fluid.2015.11.013

    Article  CAS  Google Scholar 

  30. Mohebbinia, S., Sepehrnoori, K., Johns, R.T., and Korrani, A.K.N., J. Pet. Sci. Eng., 2017, vol. 158, pp. 693–706. https://doi.org/10.1016/j.petrol.2017.09.008

    Article  CAS  Google Scholar 

  31. Nghiem, L.X., Coombe, D.A., and Ali, S.F., Abstracts of Papers, SPE Annual Technical Conference, 1998, paper no. SPE-48996-MS. https://doi.org/10.2118/48996-MS

  32. Chapman, W.G., Gubbins, K.E., Jackson, G., and Radosz, M., Fluid Phase Equilibria, 1989, vol. 52, pp. 31–38. https://doi.org/10.1016/0378-3812(89)80308-5

    Article  CAS  Google Scholar 

  33. Chapman, W.G., Sauer, S.G., Ting, D., and Ghosh, A., Fluid Phase Equilibria, 2004, vol. 217, pp. 137–143. https://doi.org/10.1016/j.fluid.2003.05.001

    Article  CAS  Google Scholar 

  34. Mahmoudvand, S., Shahsavani, B., Parsaei, R., and Malayeri, M.R., Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles, 2019, vol. 74, art. no. 63. https://doi.org/10.2516/ogst/2019037

  35. Fahim, M.A., Pet. Sci. Technol., 2007, vol. 25, pp. 1605–1612. https://doi.org/10.1080/10916460600695504

    Article  CAS  Google Scholar 

  36. Fahim, M.A., Pet. Sci. Technol., 2007, vol. 25, pp. 949–965. https://doi.org/10.1080/10916460500526981

    Article  CAS  Google Scholar 

  37. Ahmadi, Y. and Aminshahidy, B., Oil Gas Sci. Technol. – Revue IFP Energies Nouvelles, 2018, vol. 73, art. no. 56, 11 pp. https://doi.org/10.2516/ogst/2018052

  38. Abedini, A. and Abedini, R., Pet. Sci. Technol., 2012, vol. 30, pp. 1–8. https://doi.org/10.1080/10916461003735137

    Article  CAS  Google Scholar 

  39. Buenrostro-Gonzalez, E., Lira-Galeana, C., Gil-Villegas, A., and Wu, J., AIChE J., 2004, vol. 50, pp. 2552–2570. https://doi.org/10.1002/aic.10243

    Article  CAS  Google Scholar 

  40. Mohammadi, S., Rashidi, F., Mousavi-Dehghani, S.A., and Ghazanfari, M.H., Can. J. Chem. Eng., 2016, vol. 94, pp. 1820–1829. https://doi.org/10.1002/cjce.22555

    Article  CAS  Google Scholar 

  41. Yonebayashi, H., Masuzawa, T., Dabbouk, C., and Urasaki, D., Abstracts of Papers, SPE/EAGE Reservoir Characterization and Simulation Conference Held on Abu Dhabi, UAE, 19-21 October, 2009. https://doi.org/10.2118/125643-MS

  42. da Silva, N.A.E., da R. Oliveira, V.R., Souza, M.M.S., Guerrieri, Y., and Costa, G.M.N., Fluid Phase Equilibria, 2014, vol. 362, pp. 355–364. https://doi.org/10.1016/j.fluid.2013.10.053

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Imran Ali.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Neftekhimiya, 2021, Vol. 61, No. 6, pp. 808–819 https://doi.org/10.31857/S002824212106006X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.I., Haneef, J., Tirmizi, S.T. et al. Prediction of Asphaltene Precipitation Envelope (APE) Using Empirical Equations and Equation of State Model. Pet. Chem. 61, 1217–1227 (2021). https://doi.org/10.1134/S0965544121110219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121110219

Keywords:

Navigation