Skip to main content
Log in

RETRACTED ARTICLE: Deactivation of a Commercial Co–Al2O3/SiO2 Catalyst in Fischer–Tropsch Synthesis under High-Pressure and Gas Recycling Conditions

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

This article was retracted on 01 January 2023

This article has been updated

Abstract

Results of a study of the synthesis of hydrocarbons (HC) from CO and H2 in the presence of a commercial Co–Al2O3/SiO2 catalyst at 6.0 MPa and a reaction gas recycle ratio of 2.2–6.0 for 1000 h have been described. Under these conditions, the catalyst deactivation rate depends on the selectivity for synthetic C35+ long-chain HCs (SLCHCs). An increase in the SLCHC content in the products from 27.6 to 39.8% leads to a threefold increase in the catalyst deactivation rate. With an increase in the recycle ratio from 2.2 to 6.0 at a pressure of 6.0 MPa, the olefin content in the synthesis products increases. An increase in temperature leads to a shift of the selectivity toward HCs with a shorter chain. The viscosity of LCHCs condensed in the pores decreases owing to their dilution with lighter HCs, which contributes to an increase in the number of accessible active sites of the catalyst and facilitates catalyst regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Change history

REFERENCES

  1. R. Rauch, H. Hofbauer, U. Neuling, and M. Kaltschmitt, Biokerosene: Status and Prospects, Ed. by M. Kaltschmitt and U. Neuling (Springer, Berlin, 2018), p. 497.

    Google Scholar 

  2. M. E. Dry, Appl. Catal., A 276, 1 (2004).

  3. A. Y. Khodakov, W. Chu, and P. Fongarland, Chem. Rev. 107, 1692 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Q. Zhang, J. Kang, and Y. Wang, ChemCatChem 2, 1030 (2010).

    Article  CAS  Google Scholar 

  5. V. Palma, C. Ruocco, M. Martino, E. Meloni, A. Ricca, Bioenergy Systems for the Future: Prospects for Biofuels and Biohydrogen, Ed. by F. Dalena, A. Basile, and C. Rossi (Elsevier, Amsterdam, 2017), p. 217.

    Google Scholar 

  6. G. Jacobs and B. H. Davis, J. Nat. Gas Sci. Eng. 52, 549 (2018).

    Article  Google Scholar 

  7. www.grandresearchstore.com/materials-and-chemicals/north-america-fischer-tropschft-wax-industry-2016-market-research-report. Accessed April 1, 2019.

  8. O. A. Kungurova, N. V. Shtertser, G. K. Chermashentseva, et al., Catal. Ind. 9, 23 (2017).

    Article  Google Scholar 

  9. E. Iglesia, S. Soled, R. Fiato, and G. Via, J. Catal. 143, 345 (1993).

    Article  CAS  Google Scholar 

  10. N. E. Tsakoumis, M. Ronning, O. Borg, E. Rytter, A. Holmen, Catal. Today 154, 162 (2010).

    Article  CAS  Google Scholar 

  11. A. Carvalho, V. V. Ordomsky, Y. Luo, et al., J. Catal. 344, 669 (2016).

    Article  CAS  Google Scholar 

  12. G. B. Narochnyi, R. E. Yakovenko, A. P. Savost’yanov, and V. G. Bakun, Catal. Ind. 8, 139 (2016).

    Article  Google Scholar 

  13. A. P. Savost’yanov, R. E. Yakovenko, S. I. Sulima, et al., Catal.s Today 279, 107 (2017).

  14. A. P. Savost’yanov, G. B. Narochnyi, R. E. Yakovenko, et al., Pet. Chem. 58, 76 (2018).

    Article  Google Scholar 

  15. A. P. Savost’yanov, G. B. Narochnyi, R. E. Yakovenko, and V. G. Bakun, Catal. Ind. 6, 292 (2014).

    Article  Google Scholar 

  16. A. P. Savost’yanov, G. B. Narochnyi, R. E. Yakovenko, and A. L. Lapidus, Solid Fuel Chem. 49, 356 (2015).

    Article  Google Scholar 

  17. A. P. Savost’yanov, R. E. Yakovenko, G. B. Narochnyi, et al., Catal. Commun. 99, 25 (2017).

    Article  Google Scholar 

  18. R. E. Yakovenko, Candidate’s Dissertation in Engineering (Novocherkassk, 2017).

  19. PDF-2. The powder diffraction file TM. International Center fro Diffraction Data (ICDD), PDF-2 Release 2012. www.icdd.com.

  20. A. S. Kashin and V. P. Ananikov, Russ. Chem. Bull. 60, 2602 (2011).

    Article  CAS  Google Scholar 

  21. V. V. Kachala, L. L. Khemchyan, A. S. Kashin, et al., Russ. Chem. Rev. 82, 648 (2013).

    Article  Google Scholar 

  22. V. R. B. Anderson, R. A. Friedel, and H. H. Storch, J. Chem. Phys. 19, 313 (1951).

    Article  CAS  Google Scholar 

  23. M. C. Biesinger, B. P. Payne, A. P. Grosvenor, et al., Appl. Surf. Sci. 257, 2717 (2011).

    Article  CAS  Google Scholar 

  24. D. Peña, A. Griboval-Constant, F. Diehl, et al., ChemCatChem 5, 728 (2013).

    Article  Google Scholar 

  25. K. Keyvanloo, M. J. Fisher, W. C. Hecker, et al., J. Catal. 327, 33 (2015).

    Article  CAS  Google Scholar 

  26. A. M. Saib, D. J. Moodley, I. M. Ciobica, et al., Catal. Today 154, 271 (2010).

    Article  CAS  Google Scholar 

  27. D. Moodley, M. Claeys, E. van Steen, et al., Catal. Today (2019).

  28. A. P. Savost’yanov, G. B. Narochnyi, R. E. Yakovenko, et al., Catal. Ind. 10, 181 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using the equipment of the “Nanotechnology” Shared-Used Center for at the South Russian State Polytechnic University. The authors thank A.T. Kozakov and A.V. Nikol’skii (Research Institute of Physics, Southern Federal University) for assiatance in recording the XPS spectra.

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation under a state task for research and development (application code no. 10.2980.2017/4.6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Yakovenko.

Additional information

Translated by M. Timoshinina

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1134/S0965544123030040

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savost’yanov, A.P., Yakovenko, R.E., Narochnyi, G.B. et al. RETRACTED ARTICLE: Deactivation of a Commercial Co–Al2O3/SiO2 Catalyst in Fischer–Tropsch Synthesis under High-Pressure and Gas Recycling Conditions. Pet. Chem. 60, 81–91 (2020). https://doi.org/10.1134/S0965544120010120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120010120

Keywords:

Navigation