Skip to main content
Log in

Effect of Zeolite on Fischer–Tropsch Synthesis in the Presence of a Catalyst Based on Skeletal Cobalt

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The joint effect of skeletal cobalt and zeolite on the main catalytic parameters of a pelletized composite catalyst has been studied. All samples contain 50 wt % fine metallic aluminum powder. The amounts of other components are as follows: 20–30 wt % binder (boehmite), 5–20 wt % Beta zeolite in the H form (SiO2/Al2O3 = 38), and 10–20 wt % fine skeletal cobalt. The reference catalyst does not contain any zeolite. All the catalysts exhibit activity in Fischer–Tropsch synthesis and secondary transformations, the intensity of which depends on the zeolite/cobalt ratio. The composition of the resulting hydrocarbons (HCs) varies over a wide range; in particular, the content of n-paraffins and olefins is 39–88 and 3–38%, respectively. The chain growth probability varies in a range of 0.65–0.83 depending on the zeolite/cobalt ratio and the synthesis conditions. It has been shown that the catalysts studied are superior advantage to other cobalt–zeolite catalysts in CO conversion, specific activity, productivity, and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Studies in Surface Science and Catalysis, vol. 152: Fischer–Tropsch Technology, Ed. by A. P. Steynberg and M. E. Dry (Elsevier, Amsterdam, 2004).

  2. R. C. Baliban, J. A. Elia, and C. A. Floudas, AIChE J. 59, 505 (2013).

    Article  CAS  Google Scholar 

  3. D. Song and J. Li, J. Mol. Catal., A 247, 206 (2006).

  4. Greener Fischer–Tropsch Processes, Ed. by P. M. Maitlis and A. de Klerk (Wiley–VCH, Weinheim, 2013).

    Google Scholar 

  5. A. de Klerk and E. Furimsky, Catalysis in the Refining of Fischer–Tropsch Syncrude (Royal Society of Chemistry, Cambridge, 2010).

    Google Scholar 

  6. E. van Steen and M. Claeys, Chem. Eng. Technol. 31, 655 (2008).

    Article  CAS  Google Scholar 

  7. F. Fischer and H. Meyer, Ber. Dtsch. Chem. Ges. 67, 253 (1934).

    Article  Google Scholar 

  8. Ya. T. Ejdus, Russ. Chem. Bull. 20, 589 (1971).

    Article  Google Scholar 

  9. S. D. Mikhailenko, T. A. Khodareva, E. V. Leongardt, et al., J. Catal. 141, 688 (1993).

    Article  CAS  Google Scholar 

  10. H. Storch, N. Golumbic, and R. Anderson, The Fischer–Tropsch and Related Synthesis (Wiley, New York, 1951).

    Google Scholar 

  11. L. V. Sineva, V. Z. Mordkovich, V. S. Ermolaev, et al., Catal. Ind. 6, 13 (2012).

    Google Scholar 

  12. V. Z. Mordkovich, V. S. Ermolaev, I. S. Ermolaev, et al., in Proceedings of AIChE Spring Meeting and 7th Global Congress on Process Safety (2011), p. 42.

  13. L. V. Sineva, V. Z. Mordkovich, and E. Yu. Khatkova, Mendeleev Commun. 23, 44 (2012).

    Article  Google Scholar 

  14. V. Z. Mordkovich, V. S. Ermolaev, E. B. Mitberg, et al., Res. Chem. Intermediat. 41, 9539 (2015).

    Article  CAS  Google Scholar 

  15. A. L. Lapidus and A. Yu. Krylova, Russ. Chem. Rev. 67, 941 (1998).

    Article  Google Scholar 

  16. Y. Li, T. Wang, C. Wu, et al., Fuel Process. Technol. 91, 388 (2010).

    Article  CAS  Google Scholar 

  17. A. P. Savost’yanov, R. E. Yakovenko, A. N. Saliev, et al., Pet. Chem. 58, 245 (2018).

    Article  Google Scholar 

  18. S. Sartipi, J. E. van Dijk, J. Gascon, and F. Kapteijn, Appl. Catal., A 456, 11 (2013).

  19. Yu. Jin, R. Yang, Y. Mori, et al., Appl. Catal., A 456, 75 (2013).

  20. G. Espinosa, J. M. Dominguez, P. Morales-Pacheco, et al., Catal. Today 166, 47 (2011).

    Article  CAS  Google Scholar 

  21. C. Kibby, K. Jothimurugesan, T. Das, et al., Catal. Today 215, 131 (2013).

    Article  CAS  Google Scholar 

  22. A. Martinez, S. Valencia, R. Murciano, et al., Appl. Catal. A., 346, 117 (2008).

    Article  CAS  Google Scholar 

  23. S. Sartipi, K. Parashar, M. Makkee, et al., Catal. Sci. Technol. 3, 572 (2013).

    Article  CAS  Google Scholar 

  24. J. A. Rabo, Zeolite Chemistry and Catalysis (American Chemical Society, Washington, DC, 1979).

    Google Scholar 

  25. V. Z. Mordkovich, L. V. Sineva, I. G. Solomonik, et al., WO Patent No. 2010147513 (2011).

  26. V. Z. Mordkovich, L. V. Sineva, I. G. Solomonik, et al., WO Patent No. 2011016759 (2011).

  27. V. Z. Mordkovich, L. V. Sineva, I. G. Solomonik, et al., RU Patent No. 2422202 (2011).

  28. S. Cheng, B. Mazonde, G. Zhang, et al., Fuel 223, 354 (2018).

    Article  CAS  Google Scholar 

  29. R. Brosius and J. C. Q. Fletcher, J. Catal. 317, 318 (2014).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported in accordance with a state task to Technological Institute for Superhard and Novel Carbon Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Asalieva.

Ethics declarations

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asalieva, E.Y., Kul’chakovskaya, E.V., Sineva, L.V. et al. Effect of Zeolite on Fischer–Tropsch Synthesis in the Presence of a Catalyst Based on Skeletal Cobalt. Pet. Chem. 60, 69–74 (2020). https://doi.org/10.1134/S0965544120010028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120010028

Navigation