Skip to main content
Log in

Modeling of Fast-Permeant Component Removal from Gas Mixture in a Membrane Module with Pulsed Retentate

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The process of unsteady-state membrane gas separation (fast-permeant impurity removal) with a pulsed retentate flow operation was considered. A semiempirical mathematical algorithm was developed to describe this process taking into account its kinetic characteristics (total cycle time, stripping time and withdrawal time, withdrawal velocity) using the MathCad® software package. Based on the developed algorithm, the basic operational parameters that affect the separation efficiency of the unsteady-state process were analyzed. It was shown that the optimal ratio of the stripping time and the withdrawal one determined by the maximum efficiency criterion more corresponds to the minimum retentate concentration than to the maximum productivity. However, the developed algorithm allows to set the productivity minimum limit by introducing additional initial data into the calculation procedure. The mathematical modeling results correlate well with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. B. van der Bruggen, Ind. Eng. Chem. Res. 52, 10335 (2013).

    Article  CAS  Google Scholar 

  2. B. Belaissaoui, Y. L. Moullec, D. Willson, and E. Favre, J. Memb. Sci. 415–416, 424 (2012).

    Article  CAS  Google Scholar 

  3. V. M. Vorotyntsev, V. M. Malyshev, I. V. Vorotyntsev, and S. V. Battalov, Theor. Found. Chem. Eng. 50, 459 (2016).

    Article  CAS  Google Scholar 

  4. J. Pohlmann, M. Bram, K. Wilkner, and T. Brinkmann, Int. J. Greenh. Gas Control. 53, 56 (2016).

    Article  CAS  Google Scholar 

  5. Q. Kang, B. van der Bruggen, R. Dewil, et al., Sep. Purif. Technol. 149, 322 (2015).

    Article  CAS  Google Scholar 

  6. P. Luis, A. Amelioa, S. Vreysen, et al., Appl. Energy. 113, 565 (2014).

    Article  CAS  Google Scholar 

  7. C. Makhloufi, E. Lasseuguette, J. C. Remigy, et al., J. Memb. Sci. 455, 236 (2014).

    Article  CAS  Google Scholar 

  8. C. Servel, D. Roizard, E. Favre, and D. Horbez, Ind. Eng. Chem. Res. 53, 7768 (2014).

    Article  CAS  Google Scholar 

  9. T. S. Anokhina, A. A. Yushkin, P. M. Budd, and A. V. Volkov, Sep. Purif. Technol. 156, 683 (2015).

    Article  CAS  Google Scholar 

  10. A. Trusov, S. Legkov, L. J. P. van den Broeke, et al., J. Memb. Sci. 383, 241 (2011).

    Article  CAS  Google Scholar 

  11. R. W. Baker, Ind. Eng. Chem. Res. 41, 1393 (2002).

  12. W. J. Coros, J. Memb. Sci. 83, 1 (1993).

    Article  Google Scholar 

  13. R. Pathare and R. Agrawal, J. Memb. Sci. 364, 263 (2010).

    Article  CAS  Google Scholar 

  14. V. M. Vorotyntsev, P. N. Drozdov, I. V. Vorotyntsev, et al., Pet. Chem. 54, 491 (2014).

    Article  CAS  Google Scholar 

  15. I. V. Vorotyntsev, A. A. Atlaskin, M. M. Trubyanov, et al., Desalin. Water Treat. 75, 305 (2016).

    Article  CAS  Google Scholar 

  16. I. V. Vorotyntsev, D. N. Shablykin, P. N. Drozdov, et al., Pet. Chem. 57 (2), 172 (2017).

    Article  CAS  Google Scholar 

  17. V. M. Vorotyntsev, P. N. Drozdov, I. V. Vorotyntsev, and S. V. Battalov, Pet. Chem. 54, 698 (2014).

    Article  CAS  Google Scholar 

  18. V. M. Vorotyntsev, P. N. Drozdov, I. V. Vorotyntsev, and D. E. Tsygorov, Theor. Found. Chem. Eng. 43, 404 (2009).

    Article  CAS  Google Scholar 

  19. D. R. Paul, Ind. Eng. Chem. Process Des. Dev. 10, 375 (1971).

    Article  CAS  Google Scholar 

  20. L. Wang, J.-P. Corriou, C. Castel, and E. Favre, J. Memb. Sci. 383, 170 (2011).

    Article  CAS  Google Scholar 

  21. A. Higuchi and T. Nakagawa, J. Appl. Polym. Sci. 37, 2181 (1989).

    Article  CAS  Google Scholar 

  22. J.-P. Corriou, C. Fonteix, and E. Favre, AIChE J. 54, 1224 (2008).

    Article  CAS  Google Scholar 

  23. X. Feng, C. Y. Pan, and J. Ivory, AIChE J. 46, 724 (2000).

    Article  CAS  Google Scholar 

  24. Y. Chen, D. Lawless, and X. Feng, Sep. Purif. Technol. 125, 301 (2014).

    Article  CAS  Google Scholar 

  25. D. D. Nikolić and E. S. Kikkinides, Adsorption 21, 283 (2015).

    Article  CAS  Google Scholar 

  26. A. Shishov, A. Penkova, A. Zabrodin, et al., Talanta 148, 666 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. V. M. Vorotyntsev, P. N. Drozdov, I. V. Vorotyntsev, et al., Pet. Chem. 51, 595–600 (2011).

    Article  CAS  Google Scholar 

  28. I. N. Beckman, A. B. Shelekhin, and V. V. Teplyakov, J. Memb. Sci. 55, 283 (1991).

    Article  Google Scholar 

  29. V. M. Vorotyntsev, P. N. Drozdov, I. V. Vorotyntsev, et al., Pet. Chem. 51, 492 (2011).

  30. G. M. Howard, AIChE J. 16, 1030 (1970).

    Article  CAS  Google Scholar 

  31. V. M. Vorotyntsev, G. M. Mochalov, M. A. Kolotilova, et al., Theor. Found. Chem. Eng. 42, 197 (2008).

    Article  CAS  Google Scholar 

  32. V. M. Vorotyntsev, G. M. Mochalov, M. M. Trubyanov, and D. N. Shablykin, Theor. Found. Chem. Eng. 48, 55 (2014).

    Article  CAS  Google Scholar 

  33. M. M. Trubyanov, G. M. Mochalov, V. M. Vorotyntsev, and S. S. Suvorov, Russ. J. Appl. Chem. 86, 1854 (2013).

    Article  CAS  Google Scholar 

  34. M. M. Trubyanov, G. M. Mochalov, V. M. Vorotyntsev, and S. S. Suvorov, Sep. Purif. Technol. 135, 117 (2014).

    Article  CAS  Google Scholar 

  35. P. N. Drozdov and I. V. Vorotyntsev, J. Theor. Found. Chem. Eng. 37, 491 (2003).

    Article  CAS  Google Scholar 

  36. M. M. Trubyanov, P. N. Drozdov, A. A. Atlaskin, et al., J. Memb. Sci. 530, 53 (2017).

    Article  CAS  Google Scholar 

  37. P. N. Drozdov, Y. P. Kirillov, E. Y. Kolotilov, and I. V. Vorotyntsev, Desalination 146, 249 (2002).

    Article  CAS  Google Scholar 

  38. V. M. Vorotyntsev, P. N. Drozdov, I. V. Vorotyntsev, et al., Desalination 200, 232 (2006).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Science Foundation, project no. 17-79-10464.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Vorotyntsev.

Additional information

1The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battalov, S.V., Sazanova, T.S., Trubyanov, M.M. et al. Modeling of Fast-Permeant Component Removal from Gas Mixture in a Membrane Module with Pulsed Retentate. Pet. Chem. 58, 806–814 (2018). https://doi.org/10.1134/S0965544118090049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118090049

Keywords:

Navigation