Skip to main content
Log in

Effect of the Approach to Membrane Gas Transport Characteristics Determination on Gas Separation Process Simulation Results

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

In this work, the dependence of the output characteristics of the gas separation membrane process determined during the simulation on the gas transport characteristics of the membrane as parameters of the membrane module model has been studied. The study has been performed using the example of a laboratory sample containing hollow fibers from polyphenylene oxide. As a result of this comprehensive study, including theoretical and experimental approaches, it has been determined that when using the gas transport characteristics obtained for pure gases for process simulation, the error expressed in the achievable concentration of the target component in the product stream is from 1.5 to 8.8% in comparison with the experimentally obtained values for the module of the same geometry and the same membrane area. This discrepancy can lead both to the setting of unattainable targets when creating a technological line and to an incorrect technical and economic assessment of the process. Thus, when designing technological lines using mathematical modeling tools, one should rely on the gas transport characteristics of a material and/or product obtained for components of real or simulating real gas mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. N. Alsawaftah, W. Abuwatfa, N. Darwish, and G. Husseini, Water 13, 1327 (2021).

    Article  Google Scholar 

  2. P. Chaturvedi, N. K. Moehring, P. Cheng, I. Vlassiouk, M. S. H. Boutilier, and P. R. Kidambi, J. Mater. Chem. A 10, 19797 (2022).

    Article  CAS  Google Scholar 

  3. M. M. Trubyanov, P. N. Drozdov, A. A. Atlaskin, S. V. Battalov, E. S. Puzanov, A. V. Vorotyntsev, A. N. Petukhov, V. M. Vorotyntsev, and I. V. Vorotyntsev, J. Membr. Sci. 530, 53 (2017).

    Article  CAS  Google Scholar 

  4. M. M. Trubyanov, S. Y. Kirillov, A. V. Vorotyntsev, T. S. Sazanova, A. A. Atlaskin, A. N. Petukhov, Y. P. Kirillov, and I. V. Vorotyntsev, J. Membr. Sci. 587, 117173 (2019).

    Article  CAS  Google Scholar 

  5. F. Ahmad, K. K. Lau, A. M. Shariff, and G. Murshid, Comput. Chem. Eng. 36, 119 (2012).

    Article  CAS  Google Scholar 

  6. Y. Chu and X. He, Membranes 8, 118 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. A. A. Atlaskin, M. M. Trubyanov, N. R. Yanbikov, M. V. Bukovsky, P. N. Drozdov, V. M. Vorotyntsev, and I. V. Vorotyntsev, Pet. Chem. 58, 508 (2018).

    Article  CAS  Google Scholar 

  8. T. C. Merkel, H. Lin, X. Wei, and R. Baker, J. Membr. Sci. 359, 126 (2010).

    Article  CAS  Google Scholar 

  9. R. Bounaceur, E. Berger, M. Pfister, SantosA. A. Ramirez, and E. Favre, J. Membr. Sci. 523, 77 (2017).

    Article  CAS  Google Scholar 

  10. L. Zhao, E. Riensche, R. Menzer, L. Blum, and D. Stolten, J. Membr. Sci. 325, 284 (2008).

    Article  CAS  Google Scholar 

  11. A. Brunetti, P. F. Zito, I. Borisov, E. Grushevenko, V. Volkov, A. Volkov, and G. Barbieri, Fuel Process. Technol. 210, 106550 (2020).

    Article  CAS  Google Scholar 

  12. A. A. Atlaskin, A. N. Petukhov, A. N. Stepakova, N. S. Tsivkovsky, S. S. Kryuchkov, K. A. Smorodin, I. S. Moiseenko, M. E. Atlaskina, S. S. Suvorov, E. A. Stepanova, and I. V. Vorotyntsev, Membranes 13, 270 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. X. Yang, M. Duke, J. Zhang, and J. De Li, Sep. Purif. Technol. 224, 121 (2019).

    Article  CAS  Google Scholar 

  14. M. Maarefian, S. Bandehali, S. Azami, H. Sanaeepur, and A. Moghadassi, Int. J. Energy Res. 43, 8217 (2019).

    CAS  Google Scholar 

  15. M. M. Trubyanov, G. M. Mochalov, S. S. Suvorov, E. S. Puzanov, A. N. Petukhov, I. V. Vorotyntsev, and V. M. Vorotyntsev, J. Chromatogr. A 1560, 71 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. A. N. Petukhov, A. A. Atlaskin, S. S. Kryuchkov, K. A. Smorodin, D. M. Zarubin, A. N. Petukhova, M. E. Atlaskina, A. V. Nyuchev, A. V. Vorotyntsev, M. M. Trubyanov, I. V. Vorotyntsev, and V. M. Vorotynstev, Chem. Eng. J. 127726 (2020).

  17. E. A. Grushevenko, I. L. Borisov, D. S. Bakhtin, G. N. Bondarenko, I. S. Levin, and A. V. Volkov, React. Funct. Polym. 134, 156 (2019).

    Article  CAS  Google Scholar 

  18. V. Zhmakin, M. Shalygin, V. Khotimskiy, S. Matson, and V. Teplyakov, Sep. Purif. Technol. 212, 877 (2019).

    Article  CAS  Google Scholar 

  19. A. Ovcharova, V. Vasilevsky, I. Borisov, S. Bazhenov, A. Volkov, A. Bildyukevich, and V. Volkov, Sep. Purif. Technol. 183, 162 (2017).

    Article  CAS  Google Scholar 

  20. H. Anselmi, O. Mirgaux, R. Bounaceur, and F. Patisson, Chem. Eng. Technol. 42, 797 (2019).

    Article  CAS  Google Scholar 

  21. H. Lin and B. D. Freeman, J. Membr. Sci. 239, 105 (2004).

    Article  CAS  Google Scholar 

  22. J. H. Kim and Y. M. Lee, J. Membr. Sci. 193, 209 (2001).

    Article  CAS  Google Scholar 

  23. L. Deng and M. B. Hagg, Int. J. Greenhouse Gas Control 4, 638 (2010).

    Article  CAS  Google Scholar 

  24. L. Deng, T. J. Kim, and M. B. Hagg, J. Membr. Sci. 340, 154 (2009).

    Article  CAS  Google Scholar 

  25. A. Y. Houde, B. Krishnakumar, S. G. Charati, S. A. Stern, and J. Wiley, J. Appl. Polym. Sci. 62, 2181 (1996).

    Article  CAS  Google Scholar 

  26. A. Daham Wiheeb, A. Mun, E. A. Karim, T. E. Mohammed, and R. Othman, Diyala J. Eng. Sci. 846 (2015).

  27. S. M. S. Niknejad, H. Savoji, M. Pourafshari Chenar, and M. Soltanieh, Int. J. Environ. Sci. Technol. 14, 375 (2017).

    Article  CAS  Google Scholar 

  28. C. J. Orme and F. F. Stewart, J. Membr. Sci. 253, 243 (2005).

    Article  CAS  Google Scholar 

  29. C. Makhloufi, D. Roizard, and E. Favre, J. Membr. Sci. 441, 63 (2013).

    Article  CAS  Google Scholar 

  30. I. V. Vorotyntsev, D. N. Shablykin, P. N. Drozdov, M. M. Trubyanov, A. N. Petukhov, and S. V. Battalov, Pet. Chem. 57, 172 (2017).

    Article  CAS  Google Scholar 

  31. M. Modigell, M. Schumacher, V. V. Teplyakov, and V. B. Zenkevich, Desalination 224, 186 (2008).

    Article  CAS  Google Scholar 

  32. N. A. Platé, A. K. Bokarev, N. E. Kaliuzhnyi, E. G. Litvinova, V. S. Khotimskii, V. V. Volkov, and Yu. P. Yampol’skii, J. Membr. Sci. 60, 13 (1991).

    Article  Google Scholar 

  33. I. V. Vorotyntsev, P. N. Drozdov, and N. V. Karyakin, Inorg. Mater. 42, 231 (2006).

    Article  CAS  Google Scholar 

  34. C. Makhloufi, B. Belaissaoui, D. Roizard, and E. Favre, Proc. Eng. 44, 143 (2012).

    Article  CAS  Google Scholar 

  35. W. A. Phillip, E. Martono, L. Chen, M. A. Hillmyer, and E. L. Cussler, J. Membr. Sci. 337, 39 (2009).

    Article  CAS  Google Scholar 

  36. R. M. Barrer, J. A. Barrie, and J. Slater, J. Polym. Sci. 27, 177 (1958).

    Article  CAS  Google Scholar 

  37. GitHub, CCSI-Toolset/membrane_model: Membrane Separation Model: Updated Hollow Fiber Membrane Model and System Example for Carbon Capture (n.d.). https://github.com/CCSI-Toolset/membrane_model.

Download references

Funding

The work was carried out with the financial support of the Mendeleev University of Chemical Technology of Russia, an applied research project of young full-time employees of the Mendeleev University of Chemical Technology of Russia in the framework of the program of strategic academic leadership “Priority-2030” no. VIG-2022-079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Atlaskin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atlaskin, A.A., Kryuchkov, S.S., Stepakova, A.N. et al. Effect of the Approach to Membrane Gas Transport Characteristics Determination on Gas Separation Process Simulation Results. Membr. Membr. Technol. 5, 405–413 (2023). https://doi.org/10.1134/S2517751623060033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751623060033

Keywords:

Navigation