Skip to main content
Log in

Novel Pervaporation Technique Using Permeate Vapor Adsorption for Removal of Chlorinated Organics from Aqueous Media

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A novel pervaporation technique has been proposed that makes it possible to selectively remove volatile chlorinated organics (VCO) from contaminated water; to localize them on activated carbon directly in the membrane module; to create a sufficient driving force of the process due to both high sorption capacity of activated carbon and its VCO adsorption selectivity; and to abandon the use of expensive vacuum equipment, thereby minimizing vacuum pump operating costs. The influence of VCO concentration in the solution and the feed flow rate on the efficiency of VCO removal from water has been studied. It has been found that the dominant resistance to VCO flux through the membrane is due to an additional flux resistance associated with diffusion constraints in the boundary liquid layer near the membrane surface. It has been shown that VCO flux values in the case of this pervaporation method (up to 0.47 kg/(m2 h) at 30°C) are several times larger than those for conventional pervaporation approaches. The separation factor can be as high as 380–2400 for a chloroform/water mixture or 400–4800 for a trichloroethylene/water mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Loos, G. Locoro, S. Comero, et al., Water Res. 44, 4115 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. O. Hutzinger, B. Beek, and M. Metzler, The Handbook of Environmental Chemistry (Springer, Berlin, 2013).

    Google Scholar 

  3. J. P. Scott and D. F. Ollis, Environ. Prog. Sust. Energ. 14, 88 (1995).

    Article  CAS  Google Scholar 

  4. M. S. El-Shahawi, A. Hamza, A. S. Bashammakh, and W. T. Al-Saggaf, Talanta 80, 1587 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. J. Hara, Organic Pollutants Ten Years After the Stockholm Convention—Environmental and Analytical Update, Ed. by T. Puzyn and A. Mostrag-Szlichtyng (InTech, Rijeka, 2012), p. 345.

  6. P. Bhatt, M. S. Kumar, S. Mudliar, and T. Chakrabarti, Crit. Rev. Env. Sci. Technol. 37, 165 (2007).

    Article  CAS  Google Scholar 

  7. S. Yu. Larionov, A. A. Panteleev, B. E. Ryabchikov, et al., Vodosnab. Sanit. Tekh. 4, 12 (2015).

    Google Scholar 

  8. M. N. Rashed, Organic Pollutants—Monitoring, Risk and Treatment, Ed. by M. N. Rashed (InTech, Rijeka, 2013), p. 167.

  9. B. Pavoni, D. Drusian, A. Giacometti, and M. Zanette, Water Res. 40, 3671 (2006).

    Article  CAS  Google Scholar 

  10. M. Peng, L. M. Vane, and S. X. Liu, J. Hazard. Mater. 98, 69 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. K. Everaert and J. Baeyens, J. Hazard. Mater. 109, 113 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Chemistry Beyond Chlorine, Ed. by P. Tundo, L.-N. He, E. Lokteva, and C. Mota (Springer International, Switzerland, 2016).

    Google Scholar 

  13. H. S. Hu, Fluid Phase Equilib. 289, 80 (2010).

    Article  CAS  Google Scholar 

  14. I. L. Borisov and V. V. Volkov, Sep. Purif. Technol. 146, 33 (2015).

    Article  CAS  Google Scholar 

  15. A. Kujawska, J. Kujawski, M. Bryjak, and W. Kujawski, Chem. Eng. Process. 94, 62 (2015).

    Article  CAS  Google Scholar 

  16. I. L. Borisov, G. S. Golubev, V. P. Vasilevsky, et al., J. Membr. Sci. 523, 291 (2017).

    Article  CAS  Google Scholar 

  17. MDK Composite Gas Separation Membranes (ZAO NTTs Vladipor). https://doi.org/www.vladipor.ru/catalog/&cid=008, 2017.

  18. M. Hoshi, M. Ieshige, T. Saitoh, and T. Nakagawa, J. Appl. Polym. Sci. 76, 654 (2000).

    Article  CAS  Google Scholar 

  19. H. H. Nijhuis, M. H. V. Mulder, and C. A. Smolders, J. Membr. Sci. 61, 99 (1991).

    Article  CAS  Google Scholar 

  20. A. Das, I. Abou-Nemeh, S. Chandra, and K. K. Sirkar, J. Membr. Sci. 148, 257 (1998).

    Article  CAS  Google Scholar 

  21. S. Schnabel, P. Moulin, Q. T. Nguyen, et al. J. Membr. Sci. 142, 129 (1998).

    Article  CAS  Google Scholar 

  22. T. Q. Nguyen and K. Nobe, J. Membr. Sci. 30, 11 (1987).

    Article  CAS  Google Scholar 

  23. I. Blume, J. G. Wijmans, and R. W. Baker, J. Membr. Sci. 49, 253 (1990).

    Article  CAS  Google Scholar 

  24. J. G. Wijmans, A. L. Athayde, R. Daniels, J. H. Ly, et al., J. Membr. Sci. 109, 135 (1996).

    Article  CAS  Google Scholar 

  25. D. Venkatesulu, P. Venkatesu, and M. P. Rao, J. Chem. Eng. Data 42, 365 (1997).

    Article  CAS  Google Scholar 

  26. R. W. Baker, J. G. Wijmans, A. L. Athayde, et al., J. Membr. Sci. 137, 159 (1997).

    Article  CAS  Google Scholar 

  27. W. Hayduk and H. Laudie, AIChE J. 20, 611 (1974).

    Article  CAS  Google Scholar 

  28. H. O. Karlsson and G. Trägårdh, J. Membr. Sci. 81, 163 (1993).

    Article  CAS  Google Scholar 

  29. M. She and S. T. Hwang, J. Membr. Sci. 236, 193 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Borisov.

Additional information

Original Russian Text © I.L. Borisov, 2018, published in Membrany i Membrannye Tekhnologii, 2018, Vol. 8, No. 3, pp. 166–174.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, I.L. Novel Pervaporation Technique Using Permeate Vapor Adsorption for Removal of Chlorinated Organics from Aqueous Media. Pet. Chem. 58, 482–489 (2018). https://doi.org/10.1134/S0965544118060038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118060038

Keywords

Navigation