Skip to main content
Log in

A new experimental investigation on upgrading of waxy crude oils by methacrylate polymers

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Several methods have been used to reduce problems caused by wax precipitation during the production and/or transportation of waxy crude oil. Polymers are used to improve pour point and rheological behavior of waxy crude oils. In this work, the influence of the polymer inhibitors such as methacrylate polymers, as wax inhibitor, with different range of molecular weight and alkyl side chain carbons on the rheological behavior and pour point of two Iranian waxy crude oils were evaluated. Two Iranian waxy crude oils were selected on the basis of wax and asphaltene contents. The rheological behavior of these crude oils in absence and in presence of methacrylate polymer was studied. The rheological data cover the temperature range of–1 to 12°C. The results indicated that the performance of methacrylate polymer was dependent on the molecular weight, alkyl side chain carbons and the asphaltene content of crude oil. Methacrylate polymers with longer alkyl side chains than 18 carbons would perform best as wax inhibitors in two cases. Also, for crude oil with low asphaltene, higher molecular weight methacrylate polymer is the best flow improver and lower molecular weight methacrylate polymer showed good efficiency for crude oil with high asphaltene content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Pedersen and H. P. Ronningsen, Energy Fuels 17, 321 (2003).

    Article  CAS  Google Scholar 

  2. D. Chanda, A. Sarmah, A. Borthakur, K. V. Rao, B. Subrahmanyam, and H. C. Das, Fuel 77, 1163 (1998).

    Article  CAS  Google Scholar 

  3. D. Chanda, A. Sarmah, A. Borthakur, K. V. Rao, B. Subrahmanyam, and H. C. Das, Energy Fuels 10, 844 (1996).

    Article  Google Scholar 

  4. A. A. Hafiz and T. T. Khidr, J. Pet. Sci. Eng. 56, 296 (2007).

    Article  CAS  Google Scholar 

  5. I. Suryanarayana, K. Venkateswara Rao, S. Ranjan Duttachaudhury, B. Subrahmanyam, and B. Kumar Saikia, Fuel 69, 1546 (1990).

    Article  CAS  Google Scholar 

  6. L. C. Machado Andre, E. F. Lucas, and G. Gonzaleze, J. Pet. Sci. Eng. 32, 159 (2001).

    Article  Google Scholar 

  7. J. Zhang, Ch. Wu, W. Li, Y. Wang, and H. Cao, Fuel 83, 315 (2004).

    Article  CAS  Google Scholar 

  8. J. W. Qian, G. R. Qi, D. L. Han, and S. L. Yang, Fuel. 75, 161 (1996).

    Article  CAS  Google Scholar 

  9. T. Kumar Naiya, R. Kumar, S. Mohapatra, and A. Mandal, J. Petrol. Sci. Res. (JPSR) 3, 90 (2014).

    Article  Google Scholar 

  10. F. Yang, Y. Zhao, J. Sjöblom, C. Li, and K. G. Paso, J. Disper. Sci. Technol. 36, 213 (2015).

    Article  Google Scholar 

  11. B. Wei, J. Petrol. Explor. Prod. Technol. doi 10.1007/s13202-014-0146-6

  12. T. Liu, L. Fang, X. Liu, and X. Zhang, Fuel 143, 448 (2015).

    Article  CAS  Google Scholar 

  13. Y. Zhao, K. Paso, X. Zhang, and J. Sjöblom, RSC Adv. 4, 6463 (2014).

    Article  CAS  Google Scholar 

  14. A. M. Al-sabagh, F. Abdel-Hai, A. M. M. Abd El Rhman, M. EL-Shafie, and M. M. Mohammedy, Life Sci. J. 11, 731 (2014).

    Google Scholar 

  15. R. A. El-Ghazawy, A. M. Atta, and K. I. Kabel, J. Petrol. Sci. Eng. 122, 411 (2014).

    Article  CAS  Google Scholar 

  16. Y. Wang, X. Liang, G. Shu, X. Wang, X. Sun, and C. Liu, Appl. Energy 130, 33 (2014).

    Article  CAS  Google Scholar 

  17. M. S. El-Mahllawy, A. M. Sharara, M. M. Hassaan, and A. M. Abdel Haleem, EGYJP 22, 395 (2013).

    Google Scholar 

  18. M. Al-Sabagh, M. R. Noor El-Din, R. E. Morsi, and M. Z. Elsabee, J. Petrol. Sci. Eng. 65, 139 (2009).

    Article  CAS  Google Scholar 

  19. S. Yi and J. Zhang, Energy Fuels 25, 1686 (2011).

    Article  CAS  Google Scholar 

  20. L. V. Castro, E. A. Flores, and F. Vazquez, Energy Fuels 25, 539 (2011).

    Article  CAS  Google Scholar 

  21. L. Alberto Alcazar-Vara and E. Buenrostro-Gonzalez, Fuel Process. Technol. 92, 2366 (2011).

    Article  CAS  Google Scholar 

  22. T. Jafari Behbahani, A. Shahrabadi, C. Ghotbi, and V. Taghikhani, Fluid Phase Equilib. 375, 236 (2014).

    Article  Google Scholar 

  23. T. Jafari Behbahani, C. Ghotbi, V. Taghikhani, and A. Shahrabadi, Presented at The 9th European Formation Damage Conf., Noordwijk, The Netherlands, 2011.

    Google Scholar 

  24. T. Jafari Behbahani, C. Ghotbi, V. Taghikhani, and A. Shahrabadi, Sci. Iran. C 18 (6), 384 (2011).

    Google Scholar 

  25. T. Jafari Behbahani, C. Ghotbi, V. Taghikhani, and A. Shahrabadi, Energy Fuels 26, 5080 (2012).

    Article  Google Scholar 

  26. T. Jafari Behbahani, C. Ghotbi, V. Taghikhani, and A. Shahrabadi, Energy Fuels 27, 622 (2013).

    Article  Google Scholar 

  27. T. Jafari Behbahani, C. Ghotbi, V. Taghikhani, and A. Shahrabadi, Oil Gas Sci. Technol.: Rev. IFp 70 (6), 1051 (2015).

    Article  Google Scholar 

  28. T. Jafari Behbahani, C. Ghotbi, V. Taghikhani, and A. Shahrabadi, Fluid Phase Equilib. 358, 212 (2013).

    Article  Google Scholar 

  29. T. Jafari Behbahani, A. Dahaghin, and Z. Jafari Behbahani, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36, 1256 (2014).

    Article  CAS  Google Scholar 

  30. T. Jafari Behbahani, R. Golpasha, H. Akbarnia, and A. Dahaghin, Fuel Process. Technol. 89, 973 (2008).

    Article  Google Scholar 

  31. T. Jafari Behbahani, A. Dahaghin, and K. Kashefi, Petrol. Sci. Technol. 29, 933 (2011).

    Article  CAS  Google Scholar 

  32. H. R. Jafari Ansaroudi, M. Vafaie-Sefti, Sh. Massoudi, T. Jafari Behbahani, and H. Jafari, Petrol. Sci. Technol. 31, 643 (2013).

    Article  Google Scholar 

  33. T. Jafari Behbahani, C. Ghotbi, V. Taghikhani, and A. Shahrabadi, Fuel 133, 63 (2014).

    Article  Google Scholar 

  34. T. Jafari Behbahani, A. A. Miran Beigi, Z. Taheri, and B. Ghanbari, J. Mol. Liq. 211, 308 (2015).

    Article  Google Scholar 

  35. Annual Book of ASTM Standard, Petroleum Products Lubricant and Fossil Fuels, ASTM: Philadelphia, Section 5, American Society for Testing and Materials: Standard Test Method for Pour Point of Petroleum Oils, Designation: D97 Easton MD, 2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taraneh Jafari Behbahani.

Additional information

The article is published in the original.

Published in Russian in Neftekhimiya, 2017, Vol. 57, No. 5, pp. 551–557.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari Behbahani, T., Miranbeigi, A.A. & Sharifi, K. A new experimental investigation on upgrading of waxy crude oils by methacrylate polymers. Pet. Chem. 57, 874–880 (2017). https://doi.org/10.1134/S0965544117100036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544117100036

Keywords

Navigation