Skip to main content
Log in

Porous hollow fiber membranes with varying hydrophobic–hydrophilic surface properties for gas–liquid membrane contactors

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In relation to the demand for asymmetric porous hollow fiber membranes to be used in gas–liquid membrane contactors designed for operation in organic media, polysulfone membranes of this type have been prepared and subsequently modified to impart oleophobic properties to their surface. The structure and properties of the membranes have been characterized using various techniques, such as optical and scanning electron microscopy, and by measuring contact angles and the permeability of helium, carbon dioxide, and hexane. The surface properties of the membranes have been modified by etching with a mixture of hydrogen peroxide and sulfuric acid or coating with a perfluorinated acrylic copolymer. In the latter case, modified membrane samples have shown a significant reduction in wettability with both water and organic liquids. The hexane permeability data indicate the absence of hexane flow through the membrane modified with perfluorinated acrylic copolymer until a gauge pressure of about 1 atm. The results of the study lead to the conclusion that these membranes can find use in gas–liquid membrane contactors, e.g., for the removal of dissolved gases from liquid hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Shen, S. E. Kentish, and G. W. Stevens, Sep. Purif. Technol. 95, 80 (2012).

    Article  CAS  Google Scholar 

  2. A. Mansourizadeh and A. F. Ismail, J. Membr. Sci. 348, 260 (2010).

    Article  CAS  Google Scholar 

  3. M. Rahbari-Sisakht, A. F. Ismail, and T. Matsuura, Sep. Purif. Technol. 88, 99 (2012).

    Article  CAS  Google Scholar 

  4. M. Rahbari-Sisakht, A. F. Ismail, and T. Matsuura, Sep. Purif. Technol. 86, 215 (2012).

    Article  CAS  Google Scholar 

  5. F. Korminouri, M. Rahbari-Sisakht, A. F. Ismail, and T. Matsuura, Chem. Eng. J. 264, 453 (2015).

    Article  CAS  Google Scholar 

  6. T. V. Plisko, A. V. Bildyukevich, V. V. Usosky, and V. V. Volkov, Pet. Chem. 56, 321 (2016).

    Article  CAS  Google Scholar 

  7. V. A. Kirsch, V. I. Roldugin, S. D. Bazhenov, and T. V. Plisko, Pet. Chem. 55, 776 (2015).

    Article  CAS  Google Scholar 

  8. V. A. Kirsch, V. I. Roldugin, S. D. Bazhenov, and A. V. Bildukevich, Pet. Chem. 55, 339 (2015).

    Article  CAS  Google Scholar 

  9. V. A. Kirsch, V. V. Volkov, and A. V. Bildukevich, Phys. Procedia 72, 162 (2015).

    Article  CAS  Google Scholar 

  10. A. F. Ismail and A. Mansourizadeh, J. Membr. Sci. 365, 319 (2010).

    Article  CAS  Google Scholar 

  11. S. Mosadegh-Sedghi, J. Membr. Sci. 452, 332 (2014).

    Article  CAS  Google Scholar 

  12. M. Rahbari-Sisakht, Sep. Purif. Technol. 108, 119 (2013).

    Article  CAS  Google Scholar 

  13. D. C. Nymeijer, Sep. Purif. Technol. 37, 209 (2004).

    Article  CAS  Google Scholar 

  14. H. Kreulen, J. Membr. Sci. 78, 217 (1993).

    Article  CAS  Google Scholar 

  15. F. Korminouri, Chem. Eng. J. 264, 453 (2015).

    Article  CAS  Google Scholar 

  16. E. S. Lyubimova, A. V. Bildyukevich, G. B. Mel’-nikova, and V. V. Volkov, Pet. Chem. 55, 795 (2015).

    Article  Google Scholar 

  17. T. V. Plisko, A. V. Bildyukevich, V. V. Volkov, and N. N. Osipov, Pet. Chem. 55, 318 (2015).

    Article  CAS  Google Scholar 

  18. Z. Xue, J. Mater. Chem. A 2, 2445 (2014).

    Article  CAS  Google Scholar 

  19. X. Zhu, J. Membr. Sci. 466, 36 (2014).

    Article  CAS  Google Scholar 

  20. K. C. Khulbe, C. Feng, and T. Matsuura, J. Appl. Polym. Sci. 115, 855 (2010).

    Article  CAS  Google Scholar 

  21. Y. Zhu, NPG Asia Mater. 6 (5), e101 (2014).

    Article  CAS  Google Scholar 

  22. A. V. Bildyukevich and V. V. Usosky, Pet. Chem. 54, 652 (2014).

    Article  CAS  Google Scholar 

  23. E. L. Decker, B. Frank, Y. Suo, and S. Garoff, Colloids Surf. 156, 177 (1999).

    Article  CAS  Google Scholar 

  24. S. Sikalo, C. Tropea, and E. N. Ganic, Exp. Therm. Fluid Sci. 29, 795 (2005).

    Article  Google Scholar 

  25. V. V. Volkov, V. I. Lebedeva, I. V. Petrova, et al. Adv. Colloid Interface Sci. 164, 144 (2011).

    Article  CAS  Google Scholar 

  26. http://www.plasticsportal.com/membranes/BASFMembranes Flyer.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ovcharova.

Additional information

Original Russian Text © A.A. Ovcharova, V.P. Vasilevsky, I.L. Borisov, V.V. Usosky, V.V. Volkov, 2016, published in Membrany i Membrannye Tekhnologii, 2016, Vol. 6, No. 4, pp. 418–426.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovcharova, A.A., Vasilevsky, V.P., Borisov, I.L. et al. Porous hollow fiber membranes with varying hydrophobic–hydrophilic surface properties for gas–liquid membrane contactors. Pet. Chem. 56, 1066–1073 (2016). https://doi.org/10.1134/S0965544116110128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544116110128

Keywords

Navigation