Skip to main content
Log in

Study of methanol steam reforming and ethanol conversion in conventional and membrane reactors

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Research results for methanol steam reforming and ethanol conversion in a conventional and a membrane reactor in the presence of Ru–Rh/DND, LiZr2(PO4)3, and Li1.1Zr1.9In0.1(PO4)3 catalysts have been described. The samples have been characterized by X-ray diffraction, scanning electron microscopy, and the BET method. The study of the catalytic properties of the catalyst composites has shown that the Ru–Rh/DND catalyst mostly mediates the dehydrogenation process, while LiZr2(PO4)3 and Li1.1Zr1.9In0.1(PO4)3 exhibit activity in both the dehydration and dehydrogenation reactions. The membrane process with a Pd–Ru alloy membrane provides a 20% increase in the hydrogen yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Frusteri and G. Bonura, Compendium of Hydrogen Energy, vol. 1: Hydrogen Production and Purification, Ed. by V. Subramani, A. Basile, and T. N. Veziroğlu, No. 83 of Woodhead Publishing Series in Energy (Elsevier, Amsterdam, 2015), p. 109.

  2. A. B. Yaroslavtsev, Yu. A. Dobrovol’skii, N. S. Shaglaeva, et al., Usp. Khim. 81, 191 (2012).

    Article  CAS  Google Scholar 

  3. O. G. Ellert, M. V. Tsodikov, S. A. Nikolaev, and V.M. Novotortsev, Usp. Khim. 83, 718 (2014).

    Article  Google Scholar 

  4. L. L. Makarshin and V. N. Parmon, Ross. Khim. Zh. 50, 19 (2006).

    CAS  Google Scholar 

  5. N. L. Basov, M. M. Ermilova, N. V. Orekhova, and A. B. Yaroslavtsev, Usp. Khim. 82, 352–368 (2013).

    Article  Google Scholar 

  6. E. Yu. Mironova, M. M. Ermilova, N. V. Orekhova, et al., Catal. Today 236, 64 (2014).

    Article  CAS  Google Scholar 

  7. D. R. Palo, A. D. Dagle, and J. D. Holladay, Chem. Rev. 107, 3992 (2007).

    Article  CAS  Google Scholar 

  8. M. Krumpelt, T. Krause, J. Carter, et al., Catal. Today 77, 3 (2002).

    Article  CAS  Google Scholar 

  9. A. Iulianelli, T. Longo, S. Liguori, et al., Int. J. Hydrogen Energy, 34, 8558 (2009).

    Article  CAS  Google Scholar 

  10. M. A. Soria, C. Mateos-Pedrero, A. Guerrero-Ruiz, and I. Rodríguez-Ramos, Int. J. Hydrogen Energy 36, 15212 (2011).

    Article  CAS  Google Scholar 

  11. C. C. Hung, S. L. Chen, Y. K. Liao, et al., Int. J. Hydrogen Energy 37, 4955 (2012).

    Article  CAS  Google Scholar 

  12. I. A. Carbajal Ramos, T. Montini, B. Lorenzut, et al., Catal. Today 180, 96 (2012).

    Article  Google Scholar 

  13. U. Amjad, A. Vita, C. Galletti, et al., Ind. Eng. Chem. Res. 52, 15428 (2013).

    Article  CAS  Google Scholar 

  14. N. Srisiriwat, S. Therdthianwong, and A. Therdthianwong, Int. J. Hydrogen Energy 34, 2224 (2009).

    Article  CAS  Google Scholar 

  15. S. Cavallaro, V. Chiodo, A. Vita, and S. Freni, J. Power Sources 123, 10 (2003).

    Article  CAS  Google Scholar 

  16. E. Vesseli, G. Comelli, R. Rosei, et al., Appl. Catal., A 281, 139 (2005).

    Article  Google Scholar 

  17. J. L. Bi, Y. Y. Hong, C. C. Lee, et al., Catal. Today 129, 322 (2007).

    Article  CAS  Google Scholar 

  18. N. N. Vershinin, O. N. Efimov, V. A. Bakaev, et al., Fullerenes, Nanotubes, Carbon Nanostruct. 19, 63 (2011).

    Article  CAS  Google Scholar 

  19. X. Sun, R. Wang, and D. Su, Chin. J. Catal. 34, 508 (2013).

    Article  CAS  Google Scholar 

  20. I. I. Kulakova, Phys. Solid State 46, 636 (2004).

    Article  CAS  Google Scholar 

  21. M. A. Aramendia, V. Borau, J. M. Marinas, and F. J. Romero, Chem. Lett., 1361 (1994).

    Google Scholar 

  22. A. B. Il’in, M. M. Ermilova, N. V. Orekhova, and A. B. Yaroslavtsev, Inorg. Mater. 51, 711 (2015).

    Article  Google Scholar 

  23. L. O. Hagman and P. Kierkegaard, Acta Chem. Scand. 22, 1822 (1968).

    Article  CAS  Google Scholar 

  24. H. Kohhler and H. Schulz, Mater. Res. Bull. 20, 1461 (1985).

    Article  Google Scholar 

  25. A. Serghini, R. Brochu, M. Ziyad, and J. J. Vedrine, J. Chem. Soc., Faraday Trans. 87, 2487 (1991).

    Article  CAS  Google Scholar 

  26. Y. Brik, M. Kacimi, F. Bozon-Verduraz, and M. Ziyad, Microporous Mesoporous Mater. 43, 103 (2001).

    Article  CAS  Google Scholar 

  27. A. B. Il’in, S. A. Novikova, M. V. Sukhanov, et al., Inorg. Mater. 48, 397 (2012).

    Article  Google Scholar 

  28. E. I. Povarova, A. I. Pylinina, and I. I. Mikhalenko, Russ. J. Phys. Chem. A 86, 935 (2012).

    Article  CAS  Google Scholar 

  29. A. I. Pylinina and I. I. Mikhalenko, Mendeleev Commun. 22, 150 (2012).

    Article  CAS  Google Scholar 

  30. A. I. Pylinina and I. I. Mikhalenko, Russ. J. Phys. Chem. A 87, 372 (2013).

    Article  CAS  Google Scholar 

  31. I. F. J. Vankelecom, K. A. L. Vereruysse, P. E. Neys, et al., Top. Catal. 5, 125 (1998).

    Article  CAS  Google Scholar 

  32. V. Diakov and A. Varma, Chem. Eng. Sci. 57, 1099 (2002).

    Article  CAS  Google Scholar 

  33. R. Tesser, M. D. Serio, and E. Santacesaria, Catal. Today 77, 325 (2003).

    Article  CAS  Google Scholar 

  34. A. Iulianelli, P. Ribeirinha, A. Mendes, and A. Basile, Renew. Sust. Energy Rev. 24, 355 (2014).

    Article  Google Scholar 

  35. A. Iulianelli and A. Basile, Catal. Sci. Technol. 1, 366 (2011).

    Article  CAS  Google Scholar 

  36. E. Yu. Mironova, A. A. Lytkina, M. M. Ermilova, et al., Int. J. Hydrogen Energy 40, 3557 (2015).

    Article  CAS  Google Scholar 

  37. F. A. Lewis, Platinum Met. Rev. 26, 121 (1982).

    CAS  Google Scholar 

  38. N. A. Al-Mufachi, N. V. Rees, and R. Steinberger-Wilkens, Renew. Sust. Energy Rev. 47, 540 (2015).

    Article  CAS  Google Scholar 

  39. H. W. Abu El Hawa, S. N. Paglieri, et al., J. Membr. Sci. 466, 151 (2014).

    Article  CAS  Google Scholar 

  40. V. M. Gryaznov, M. M. Ermilova, N. V. Orekhova, and G. F. Tereschenko, Structured Catalysts and Reactors, 2nd Ed., Ed. by A. Cybulski and J. A. Moulijn (Taylor and Francis, London, 2005), p. 579.

  41. M. Itoh, M. Saito, C. Yu Li, et al., Chem. Lett. 34, 1104 (2005).

    Article  CAS  Google Scholar 

  42. V. M. Gryaznov, A. P. Mishchenko, V. P. Polyakova, Dokl. Akad. Nauk SSSR 211, 624 (1973).

    CAS  Google Scholar 

  43. M. P. Pechini, US Patent, No. 3 330 697 (1967); M. Kakihana and M. Yoshimura, Bull. Chem. Soc. Jpn. 72, 1427 (1999).

    Google Scholar 

  44. C. R. Mariappan, C. Galven, M. P. Crosnier-Lopez, et al., Solid State Chem. 179, 450 (2006).

    Article  CAS  Google Scholar 

  45. F. Ejehi, S. P. H. Marashi, M. R. Ghaani, and D. F. Haghshenas, Ceram. Int. 38, 6857 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lytkina.

Additional information

Original Russian Text © A.A. Lytkina, A.B. Ilin, A.B. Yaroslavtsev, 2016, published in Membrany i Membrannye Tekhnologii, 2016, Vol. 6, No. 4, pp. 397–405.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lytkina, A.A., Ilin, A.B. & Yaroslavtsev, A.B. Study of methanol steam reforming and ethanol conversion in conventional and membrane reactors. Pet. Chem. 56, 1048–1055 (2016). https://doi.org/10.1134/S0965544116110104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544116110104

Keywords

Navigation