Skip to main content
Log in

Production of High-Purity Hydrogen by Steam Reforming of Associated Petroleum Gas in Membrane Reactor with Industrial Nickel Catalyst

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

The features of steam reforming of a hydrocarbon mixture containing 71.8% СН4, 15.6% С2Н6, 10.2% С3Н8, and 2.4% С4Н10 in a membrane reactor with a 30 μm thick Pd–Ru alloy foil and the NIAP-03-01 industrial nickel catalyst have been investigated. The reaction was studied in the temperature range of 723–823 K at a steam/feed ratio of 5 and space velocities of 1800 and 3600 h−1. Comparison with the “nonmembrane” reaction showed that in the membrane reactor, the feedstock conversion to form H2 and CO2 increases and the yield of byproduct methane and carbon deposits decreases. With an increase in the rate of H2 recovery from the reaction mixture by permeate evacuation, the degree of conversion by the water gas shift reaction yielding H2 and CO2 increases. Under optimal conditions (773–823 K, 1800 h−1, permeate evacuation), high purity H2 is formed in an amount of about 0.8 mmol/(min gcat) and more than 80% of H2 is recovered from the reaction mixture. As the feed space velocity increases to 3600 h−1, the yield of hydrogen increases to 1.3 mmol/(min gcat) and 90% of H2 is recovered through the membrane. However, a high conversion of the feedstock into carbon deposits is observed in this case. In general, the results obtained show that it is possible to obtain high-purity hydrogen from associated petroleum gases by optimizing the conditions of steam reforming in a membrane reactor without preliminary isolation of C2+ alkanes from the feedstock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. J. Peighambardoust, S. Rowshanzamir, and M. Amjjadi, J. Hydrogen Energy 35, 9349 (2010).

    Article  CAS  Google Scholar 

  2. I. Dincer and C. Acar, Int. J. Hydrogen Energy 40, 11094 (2015).

    Article  CAS  Google Scholar 

  3. S. A. Skrylev, www.syl.ru/article/228523/new_himicheskiysostav-prirodnogo-gaza

  4. Xu. Wang, X. Zou, Xi. Wang, X. Lu, and W. Ding, Int. J. Hydrogen Energy 36, 4908 (2011).

    Article  Google Scholar 

  5. T. Sperie, D. Chen, R. Lodeng, and A. Holmen, Appl. Catal. A: Gen. 282, 195 (2005).

    Article  Google Scholar 

  6. V. M. Gryaznov, Dokl. Akad. Nauk SSSR 189, 794 (1969).

    CAS  Google Scholar 

  7. V. M. Gryaznov, Platinum Met. Rev. 30, 68 (1986).

    CAS  Google Scholar 

  8. V. M. Gryaznov, M. M. Ermilova, N. V. Orekhova, and E. V. Skakunova, Russ. Chem. Bull., Int. Ed. 37, 637 (1988).

    Google Scholar 

  9. V. M. Gryaznov, Sep. Purif. Rev. 29, 171 (2000).

    Article  CAS  Google Scholar 

  10. M. A. Habib, A. Harale, S. Paglieri, F. S. Alrashed, A. Al-Sayoud, M. V. Rao, M. A. Nemitallah, S. Hossain, M. Hussien, A. Ali, M. A. Haque, A. Abuelyamen, M. R. Shakeel, E. M. A. Mokheimer, and R. Ben-Mansour, Energy Fuels 35, 5558 (2021).

    Article  CAS  Google Scholar 

  11. B. Anzelmo, J. Wilcoxa, and S. Liguoria, J. Membr. Sci. 522, 343 (2017).

    Article  CAS  Google Scholar 

  12. B. Anzelmo, J. Wilcoxa, and S. Liguoria, J. Membr. Sci. 568, 113 (2018).

    Article  CAS  Google Scholar 

  13. B. Anzelmo, J. Wilcoxa, and S. Liguoria, J. Membr. Sci. 565, 25 (2018).

    Article  CAS  Google Scholar 

  14. Y. Shirasaki, T. Tsuneki, Y. Ota, I. Yasuda, S. Tachibana, and H. Nakajima, Int. J. Hydrogen Energy 34, 4482 (2009).

    Article  CAS  Google Scholar 

  15. A. Mahecha-Botero, T. Boyd, A. Gulamhusein, J. R. Grace, C. J. Lim, Y. Shirasaki, H. Kurokawa, and I. Yasuda, Int. J. Hydrogen Energy 36, 10727 (2011).

    Article  CAS  Google Scholar 

  16. A. Mahecha-Botero, T. Boyd, A. Gulamhusein, N. Comyn, C. J. Lim, J. R. Grace, Y. Shirasaki, and I. Yasuda, Chem. Eng. Sci. 63, 2752 (2008).

    Article  CAS  Google Scholar 

  17. L. P. Didenko, L. A. Sementsova, P. E. Chizhov, and T. V. Dorofeeva, Petr. Chem. 59, 394 (2019).

    Article  CAS  Google Scholar 

  18. L. P. Didenko, L. A. Sementsova, V. N. Babak, P. E. Chizhov, T. V. Dorofeeva, and Ju. P. Kvurt, Membr. Membr. Technol. 2, 85 (2020).

    Article  CAS  Google Scholar 

  19. G. S. Burkhanov, N. B. Gorina, N. B. Kolchugina, N. R. Roshan, D. I. Slovetsky, and E. M. Chistov, Platinum Met. Rev. 55, 3 (2011).

    Article  CAS  Google Scholar 

  20. L. P. Didenko, L. A. Sementsova, P. E. Chizhov, V. N. Babak, and V. I. Savchenko, Russ. Chem. Bull. 65, 1997 (2016).

    Article  CAS  Google Scholar 

  21. L. P. Didenko, V. N. Babak, L. A. Sementsova, P. E. Chizhov, and T. V. Dorofeeva, Neftekhimiya 61, 92 (2021).

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out under the Basic Research Program of State Academies of Sciences, subject no. 0089-2019-0018 of the Institute for Problems of Chemical Physics (state registration number AAAA-A19-119022690098-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Didenko.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest requiring disclosure in this article.

AUTHOR INFORMATION

Babak Vladislav, Doctor of Science in Physics and Mathematics, https://orcid.org/0000-0003-4126-4574,

Sementsova Larisa, https://orcid.org/0000-0002-5477-5149,

Chizhov Petr, https://orcid.org/0000-0003-1967-0787,

Dorofeeva Tatiana, https://orcid.org/0000-0003-4554-0919,

Gorbunov Semyon, https://orcid.org/0000-0002-1785-7057.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didenko, L.P., Babak, V.N., Sementsova, L.A. et al. Production of High-Purity Hydrogen by Steam Reforming of Associated Petroleum Gas in Membrane Reactor with Industrial Nickel Catalyst. Membr. Membr. Technol. 3, 302–309 (2021). https://doi.org/10.1134/S2517751621050048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751621050048

Keywords:

Navigation