Skip to main content
Log in

Kinetic description of rapeseed oil conversion into aromatic hydrocarbons on promoted MFI zeolite

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

An approach to the construction of a kinetic model for the reactions of rapeseed oil hydroconversion to aromatic hydrocarbons has been proposed, which is based on analysis of experimental data obtained using a MFI zeolite promoted with zinc and chromium ions. An empirical mathematical model describing the dynamic behavior of the main products of the decomposition reaction of rapeseed oil as a model feedstock has been developed. It has been shown that an increase in the space time and temperature in the examined range of reaction conditions increase the yield of aromatic hydrocarbons. The influence of hydrogen pressure on the yield of aromatics is nonmonotonic in character, passing through a maximum, with the optimum yield being in the middle of the hydrogen pressure range of 10–20 atm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Chistyakov, P. A. Zharova, M. V. Tsodikov, et al., Dokl. Chem. 460, 26 (2015).

    Article  CAS  Google Scholar 

  2. M. V. Tsodikov, A. V. Chistyakov, M. A. Gubanov, et al., Pet. Chem. 53, 46 (2013).

    Article  CAS  Google Scholar 

  3. A. G. Dedov, A. S. Loktev, T. V. Kosakova, et al., Theor. Found. Chem. Eng. 46, 556 (2012).

    Article  CAS  Google Scholar 

  4. Y. S. Prasad and N. N. Bakhshi, Appl. Catal. 18, 71b (1985).

    Article  Google Scholar 

  5. W. O. Haag, P. G. Rodewald, and P. B. Weisz, US Patent No. 4 300 009 (1981).

    Google Scholar 

  6. T. Benson, R. Hernandez, W. French, et al., J. Mol. Catal. A: Chem, 303, 117 (2009).

    Article  CAS  Google Scholar 

  7. X. Dupain, D. J. Costa, C. J. Schaverien, et al., Appl. Catal., B 72, 44 (2007).

    Article  CAS  Google Scholar 

  8. Y.-S. Ooi, R. Zakaria, A. R. Mohamed, and S. Bhatia, Energy Fuels 19, 736 (2005).

    Article  CAS  Google Scholar 

  9. N. Mo, W. Tandar, and P. E. Savage, J. Supercrit. Fluids 102, 73 (2015).

    Article  CAS  Google Scholar 

  10. C. Torri, D. Fabbri, L. Garcia-Alba, and D. W. F. Brilman, J. Anal. Appl. Pyrolys. 101, 28 (2013).

    Article  CAS  Google Scholar 

  11. Z. Li and P. E. Savage, Algal Res. 2, 154 (2013).

    Article  Google Scholar 

  12. D. Chen, N. I. Tracy, D. W. Crunkleton, and G. L. Price, Appl. Catal., A 384, 206 (2010).

    Article  CAS  Google Scholar 

  13. R. Černý, M. Kubu, and D. Kubička, Cat. Today 204, 46 (2013).

    Article  Google Scholar 

  14. F. A. Twaiq, N. A. M. Zabidi, and S. Bhatia, Ind. Eng. Chem. Res. 38, 3230 (1999).

    Article  CAS  Google Scholar 

  15. F. A. Twaiq, A. R. Mohamad, and S. Bhatia, Fuel Process. Technol. 85, 1283 (2004).

    Article  CAS  Google Scholar 

  16. F. A. Twaiq, A. R. Mohamed, and S. Bhatia, Microporous Mesoporous Mater. 64, 95 (2003).

    Article  CAS  Google Scholar 

  17. Y.-S. Ooi, R. Zakaria, A. R. Mohamed, and S. Bhatia, Appl. Catal., A 274, 15 (2004).

    Article  CAS  Google Scholar 

  18. P. Tamunaidu and S. Bhatia, Bioresource Technol. 98, 3593 (2007).

    Article  CAS  Google Scholar 

  19. T. L. Chew and S. Bhatia, Bioresource Technol. 100, 2540 (2009).

    Article  CAS  Google Scholar 

  20. Y.-S. Ooi, R. Zakaria, A. R. Mohamed, and S. Bhatia, Catal. Commun. 5, 441 (2004).

    Article  CAS  Google Scholar 

  21. H. Li, B. Shen, J. C. Kabalu, and M. Nchare, Renew. Energy 34, 1033 (2009).

    Article  CAS  Google Scholar 

  22. I. Kubi kova, M. Snåre, K. Eränen, et al., Catal. Today 106, 197 (2005).

    Article  Google Scholar 

  23. M. Snåre, I. Kubi kova, P. Mäki-Arvela, et al., Chem. Eng. J. 134, 29 (2007).

    Article  Google Scholar 

  24. V. G. Gorsky, Design of Experiments and Data Analysis: New Trends and Results, Ed. by E. K. Letzky, (Antal, Moscow, 1993), p. 92.

    Google Scholar 

  25. V. G. Gorskii, E. A. Katsman, F. D. Klebanova, and A. A. Grigor’ev, Theor. Exp. Chem. 23, 181 (1987).

    Article  Google Scholar 

  26. E. A. Katsman and A. S. Berenblyum, Software Suite for Construction and Analysis of Kinetic Models and Its Application (MITHT, Moscow, 2010) [in Russian].

    Google Scholar 

  27. E. A. Katsman and O. B. Sobolev, Inf. Byull. Khim. Prom. SEV 68 (5), 47 (1982).

    Google Scholar 

  28. L. Lloyd, D. E. Ridler, and M. V. Twigg, Catalyst Handbook, Ed. by M. V. Twigg (Wolfe, London, 1989), p. 283.

  29. G. A. Olah, Org. Chem. 66, 5943 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Dedov.

Additional information

Original Russian Text © A.G. Dedov, A.S. Loktev, E.A. Katsman, M.V. Tsodikov, A.V. Chistyakov, A.E. Gekhman, E.A. Isaeva, I.I. Moiseeva, 2016, published in Neftekhimiya, 2016, Vol. 56, No. 4, pp. 358–366.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedov, A.G., Loktev, A.S., Katsman, E.A. et al. Kinetic description of rapeseed oil conversion into aromatic hydrocarbons on promoted MFI zeolite. Pet. Chem. 56, 591–598 (2016). https://doi.org/10.1134/S0965544116070057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544116070057

Keywords

Navigation