Skip to main content
Log in

Partial oxidation of lower alkanes by active lattice oxygen of metal oxide systems: 1. Experimental methods and equipment

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Processes for manufacturing synthesis gas, one of the most important high-volume products of gas chemistry, have been briefly surveyed. Trends in the development of catalysts and technologies used in the process have been shown. One of the most promising in terms of engineering design, cost, and safety is that based on the oxidative conversion of lower alkanes into synthesis gas with a circulating microspherical heterogeneous metal oxide contact. Experimental methods and devices for studying heterogeneous contacts and designing the process technology have been proposed. By the example of microspherical Ni-Co metal oxide heterogeneous contact, it has been shown that the proposed methods and setups provide extensive information and are useful for studying synthesis gas manufacturing in a system with separate feedstock and oxidant supply to the reaction and regeneration zones, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Rostrup-Nielsen, Catal. Today. 71, 243 (2002).

    Article  CAS  Google Scholar 

  2. O. V. Krylov, Kinet. Katal. 46, 169 (2005).

    Google Scholar 

  3. D. A. Hickman and L. D. Schmidt, J. Catal. 138, 267 (1992).

    Article  CAS  Google Scholar 

  4. R. Horn, K. A. Williams, N. J. Degenstein, and L. D. Schmidt, J. Catal. 242, 92 (2006).

    Article  CAS  Google Scholar 

  5. R. Horn, K. A. Williams, L. D. Schmidt, et al., J. Catal. 249, 380 (2007).

    Article  CAS  Google Scholar 

  6. R. Horn, K. A. Williams, N. J. Degenstein, and L. D. Schmidt, Chem. Eng. Sci. 62, 1298 (2007).

    Article  CAS  Google Scholar 

  7. Q. Miao, G. Xiong, X. Li, et al., Catal. Lett. 41, 165 (1996).

    Article  CAS  Google Scholar 

  8. R. Jin, Y. Chen, W. Li, et al., Appl. Catal. A: Gen. 201, 71 (2000).

    Article  CAS  Google Scholar 

  9. Y. Ji, W. Li, H. Xu, and Y. Chen, Catal. Lett. 71, 45 (2001).

    Article  CAS  Google Scholar 

  10. X. X. Gao, C. J. Huang, N. W Zhang, et al., Catal. Today 131, 211 (2008).

    Article  CAS  Google Scholar 

  11. K. Li, H. Wang, Y. Wei, and D. Yan, Chem. Eng. J. 156, 512 (2010).

    Article  CAS  Google Scholar 

  12. E. P. J. Mallens, J. H. B. J. Hoebink, and G. B. Marin, Catal. Lett. 33, 291 (1995).

    Article  CAS  Google Scholar 

  13. E. P. J. Mallens, PhD Thesis (Eindhoven University of Technology, Eindhoven).

  14. J. B. Claridge, M. L. H. Green, S. C. Tsang, et al., Catal. Lett.,1993, 22, 299.

    Article  CAS  Google Scholar 

  15. M. Prettre, Ch. Eichne, and M. Perrin, Trans. Faraday Soc. 42, 335 (1946).

    Article  CAS  Google Scholar 

  16. P. D. F. Vernon, M. L. H. Green, A. K. Cheetham, and A. T. Ashcroft, Catal. Lett. 6, 181 (1990).

    Article  CAS  Google Scholar 

  17. D. Dissanayake, M. P. Rosynek, K. C. C. Kharas, and J. H. Lunsford, J. Catal. 132, 117 (1991).

    Article  CAS  Google Scholar 

  18. V. S. Arytyunov and O. V. Krylov, Usp. Khim. 74, 1216 (2005).

    Google Scholar 

  19. N. Ya. Usachev, V. V. Kharlamov, E. P. Belanova, et al., Neftekhimiya 51, 107 (2011) [Pet. Chem. 51, 96 (2011)].

    Google Scholar 

  20. Y. H. Hu and E. Ruckenstein, Adv. Catal. 48, 297 (2004).

    Article  CAS  Google Scholar 

  21. A. P. E. York, T. Xiao, M. L. H. Green, Top. Catal., 345 (2003).

  22. Q. Miao, G. Xiong, L. Xu, et al., Appl. Catal. A: Gen. 154, 17 (1997).

    Article  CAS  Google Scholar 

  23. P. S. Santos, H. S. Santos, and S. P. Toledo, Mater. Res. 3, 104 (2000).

    CAS  Google Scholar 

  24. M. Machida, K. H. Eguch Arai, J. Catal. 123, 477 (1990).

    Article  CAS  Google Scholar 

  25. G. Colorio, J. Vedrine, A. Auroux, and B. Bonnetot, Appl. Catal. A: Gen. 137, 55 (1996).

    Article  CAS  Google Scholar 

  26. S. Liu et al. 63, Catal. Lett., 167 (1999).

    Article  CAS  Google Scholar 

  27. S. Liu et al., React. Kinet. Catal. Lett. 70, 311 (2000).

    Article  CAS  Google Scholar 

  28. R. S. Vincent et al., Proc. Combust. Inst. 33, 1809 (2011).

    Article  CAS  Google Scholar 

  29. M. Fathi, E. Bjorguma, and O. Rokstad, Catal. Lett. 72, 25 (2001).

    Article  CAS  Google Scholar 

  30. T. Sasaki, K. Nakao, K. Tomishige, and K. Kunimori, Appl. Catal. A: Gen. 328, 140 (2007).

    Article  CAS  Google Scholar 

  31. A. Beretta and P. Forzatti, Chem. Eng. J. 99, 219 (2004).

    Article  CAS  Google Scholar 

  32. S. Liu et al., Appl. Catal. A: Gen. 211, 145 (2001).

    Article  CAS  Google Scholar 

  33. H. Pennemann et al., Chem. Eng. J. 135, 66 (2008).

    Article  Google Scholar 

  34. W. Chueh, Z. Shao, and S. Haile, Top. Catal. 46, 402 (2007).

    Article  CAS  Google Scholar 

  35. P. Corbo and F. Migliardini, Int. J. Hydrogen Energy 32, 55 (2007).

    Article  CAS  Google Scholar 

  36. S. Liu, G. Xiong, S. Sheng, and W. Yang, Appl. Catal. A: Gen. 198, 261 (2000).

    Article  CAS  Google Scholar 

  37. K. Otsuka, T. Ushiyama, and I. Yamanaka, Chem. Lett. 22, 1517 (1993).

    Article  Google Scholar 

  38. Y. Wei, H. Wang, F. He, et al., J. Nat. Gas Chem. 16, 6 (2007).

    Article  CAS  Google Scholar 

  39. K. Z. Li et al., Chem. Eng. J. 156, 512 (2010).

    Article  CAS  Google Scholar 

  40. K. Li, H. Wang, Y. Wei, and D. Yan, Appl. Catal. B: Env. 97, 361 (2010).

    Article  CAS  Google Scholar 

  41. O. Nakayama et al., Catal. Today 138, 141 (2008).

    Article  CAS  Google Scholar 

  42. B. C. Bjørn Christian Enger, R. Lødeng, and A. Holmen, Appl. Catal. A Gen. 346, 1 (2008).

    Article  Google Scholar 

  43. M. Ryden, A. Lyngfelt, and T. Mattisson, Fuel 85, 1631 (2006).

    Article  CAS  Google Scholar 

  44. L. F. de Diego, M. Ortiz, J. Adanez, et al., Chem. Eng. J.,144, 289 (2008).

    Article  Google Scholar 

  45. F. He, Y. Yonggang, H. Li, and H. Wang, Energy Fuels 23, 2095 (2009).

    Article  CAS  Google Scholar 

  46. M. Johansson, T. Mattisson, A. Lyngfelt, and A. Abad, Fuel 87, 988 (2008).

    Article  CAS  Google Scholar 

  47. Q. Zafar, T. Mattisson, and B. Gevert, Ind. Eng. Chem. Res. 44, 3485 (2005).

    Article  CAS  Google Scholar 

  48. H. Jin, T. Okamoto, and M. Ishida, Energy Fuels 12, 1272 (1998).

    Article  CAS  Google Scholar 

  49. M. Ryden, A. Lyngfelt, T. Mattisson, et al., Int. J. Greenhouse Control 2, 21 (2008).

    Article  CAS  Google Scholar 

  50. L. F. Diego, M. Ortiz, F. Garcia-Labiano, et al., Energy Proc. 1, 3 (2009).

    Article  Google Scholar 

  51. M. Ortiz, L. F. Diego, A. Abad, et al., Int. J. Hydrogen Energy 35, 151 (2010).

    Article  CAS  Google Scholar 

  52. N. Ya. Usachev, V. V. Kharlamov, A. V. Kazakov, and E. P. Belanova, Oil Market, No. 2, 84 (2009).

  53. N. Ya. Usachev, V. V. Kharlamov, and A. V. Kazakov, Gazokhimiya, No. 6, 68 (2009).

  54. N. Ya. Usachev, V. V. Kharlamov, A. V. Kazakov, and E. P. Belanova, Molek. Tekhnol. 4–1, 27 (2010). http://www.niipa.ru/journal/articles/4.1-3.pdf.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Gerzeliev.

Additional information

Original Russian Text © I.M. Gerzeliev, N.Ya. Usachev, A.Yu. Popov, S.N. Khadzhiev, 2011, published in Neftekhimiya, 2011, Vol. 51, No. 6, pp. 420–426.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerzeliev, I.M., Usachev, N.Y., Popov, A.Y. et al. Partial oxidation of lower alkanes by active lattice oxygen of metal oxide systems: 1. Experimental methods and equipment. Pet. Chem. 51, 411–417 (2011). https://doi.org/10.1134/S0965544111060168

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544111060168

Keywords

Navigation