Skip to main content
Log in

On Weak Solvability of a Flow Problem for Viscoelastic Fluid with Memory

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The existence of weak solutions of the initial-boundary value problem for the equations of motion of a viscoelastic fluid with memory along trajectories of a nonsmooth velocity field and with an inhomogeneous boundary condition is proved. The study relies on Galerkin-type approximations of the original problem followed by passage to the limit based on a priori estimates. The theory of regular Lagrangian flows is used to examine the behavior of trajectories of a nonsmooth velocity field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. A. P. Oskolkov, “Initial-boundary value problems for equations of motion of Kelvin–Voigt fluids and Oldroyd fluids,” Proc. Steklov Inst. Math. 179, 137–182 (1989).

    Google Scholar 

  2. V. G. Zvyagin and V. P. Orlov, “On the weak solvability of the problem of viscoelasticity with memory,” Differ. Equations 53 (2), 212–217 (2017).

    Article  MathSciNet  Google Scholar 

  3. V. G. Zvyagin and V. P. Orlov, “Solvability of one non-Newtonian fluid dynamics model with memory,” Nonlinear Anal.: Theory Methods Appl. 172, 73–98 (2018).

    Article  MathSciNet  Google Scholar 

  4. V. G. Zvyagin and V. P. Orlov, “On one problem of viscoelastic fluid dynamics with memory on an infinite time interval,” Discrete Continuous Dyn. Syst., Ser. B 23 (9), 3855–3877 (2018).

    Article  MathSciNet  Google Scholar 

  5. V. P. Orlov, “A non-homogeneous regularized problem of dynamics of viscoelastic continuous medium,” Russ. Math. 56, 48–53 (2012).

    Article  Google Scholar 

  6. A. V. Zvyagin, V. G. Zvyagin, and D. M. Polyakov, “Dissipative solvability of an alpha model of fluid flow with memory,” Comput. Math. Math. Phys. 59 (7), 1185–1198 (2019).

    Article  MathSciNet  Google Scholar 

  7. V. G. Zvyagin and V. P. Orlov, “On regularity of weak solutions to a generalized Voigt model of viscoelasticity,” Comput. Math. Math. Phys. 60 (11), 1872–1888 (2020).

    Article  MathSciNet  Google Scholar 

  8. V. G. Zvyagin and V. P. Orlov, “On a model of thermoviscoelasticity of Jeffreys–Oldroyd type,” Comput. Math. Math. Phys. 56 (10), 1803–1812 (2016).

    Article  MathSciNet  Google Scholar 

  9. V. G. Zvyagin and D. A. Vorotnikov, Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics (Walter de Gruyter, Berlin, 2008).

    Book  Google Scholar 

  10. I. I. Vorovich and V. I. Yudovich, “Steady flows of a viscous incompressible fluid,” Mat. Sb. 53 (4), 393–428 (1961).

    MathSciNet  Google Scholar 

  11. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow (Gordon and Breach, New York, 1969).

    Google Scholar 

  12. M. V. Korobkov, K. Pileckas, V. V. Pukhnachov, and R. Russo, “The flux problem for the Navier–Stokes equations,” Russ. Math. Surv. 69 (6), 1065–1122 (2014).

    Article  MathSciNet  Google Scholar 

  13. R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis (North-Holland, Amsterdam, 1979).

    Google Scholar 

  14. Functional Analysis, Ed. by S. G. Krein (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  15. R. J. DiPerna and P. L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces,” Invent. Math. 98, 511–547 (1989).

    Article  MathSciNet  Google Scholar 

  16. G. Crippa and C. de Lellis, “Estimates and regularity results for the diPerna–Lions flow,” J. Reine Angew. Math. 616, 15–46 (2008).

    MathSciNet  Google Scholar 

  17. Yu. N. Bibikov, A Course in Ordinary Differential Equations (Leningrad. Gos. Univ., Leningrad, 1981) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-11-00103.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. G. Zvyagin or V. P. Orlov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Ruzanova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX

APPENDIX

Below are the above-used facts from the theory of RLFs. In a bounded domain \({{\Omega }_{0}}\) with a smooth boundary \(\partial {{\Omega }_{0}}\), consider the Cauchy problem

$$z(\tau ;t,x) = x + \int\limits_t^\tau u(s,z(s;t,x)){\kern 1pt} ds,\quad \tau \in [0,T],\quad t \in [0,T],\quad x \in {{\Omega }_{0}}.$$
(6.1)

Definition 6.1. Suppose that \(u \in {{L}_{1}}(0,T;\mathop W\limits^ \circ {\kern 1pt} _{p}^{1}{{({{\Omega }_{0}})}^{N}})\), \(1 \leqslant p \leqslant + \infty \), \({\text{div}}{\kern 1pt} u(t,x) = 0\), and \(u{\kern 1pt} {{{\text{|}}}_{{[0,T] \times \partial {{\Omega }_{0}}}}} = 0\). The regular Lagrangian flow (RLF) associated with \(u\) is defined as a function \(z(\tau ;t,x)\), \((\tau ;t,x) \in [0,T] \times [0,T] \times {{\overline \Omega }_{0}}\), satisfying the following conditions:

(1) For a.e. x and any \(t \in [0,T]\), the function \(z(\tau ;t,x)\) is absolutely continuous and satisfies Eq. (6.1).

(2) For any \(t,\tau \in [0,T]\) and an arbitrary Lebesgue measurable set B with measure m(B), it is true that \(m(z(\tau ;t,B)) = m(B).\)

(3) For all \({{t}_{i}}, \in [0,T],\) \(i = 1,2,3\), and a.e. \(x \in \overline \Omega \), \(z({{t}_{3}};{{t}_{1}},x) = z({{t}_{3}};{{t}_{2}},z({{t}_{2}};{{t}_{1}},x))\).

The following results hold (see, e.g., [15, 16]).

Theorem 6.1. Assume that \(u \in {{L}_{1}}(0,T;\mathop W\limits^ \circ {\kern 1pt} _{p}^{1}{{({{\Omega }_{0}})}^{N}})\), \(1 \leqslant p \leqslant + \infty \), \({\text{div}}{\kern 1pt} u(t,x) = 0\) and \(u{\kern 1pt} {{{\text{|}}}_{{[0,T] \times \partial \Omega }}} = 0\). Then there exists a unique RLF \(z\) associated with \({v}\). Moreover, \(\partial z(\tau ;t,x){\text{/}}\partial \tau \) = \(u(\tau ,z(\tau ;t,x))\) for \(t \in [0,T],\) a.e. \(\tau \in [0,T],\) and a.e. \(x \in {{\Omega }_{0}}\).

Theorem 6.2. Suppose that \(v\), \({{v}^{m}} \in {{L}_{1}}(0,T;\mathop W\limits^ \circ {\kern 1pt} _{1}^{p}{{({{\Omega }_{0}})}^{N}})\), \(m = 1,2, \ldots \) for some \(p > 1\). Assume that \({\text{div}}{\kern 1pt} v = 0\), \({\text{div}}{\kern 1pt} {{v}^{m}} = 0\), \({{v}^{m}}{\kern 1pt} {{{\text{|}}}_{{[0,T] \times \partial {{\Omega }_{0}}}}} = 0\), and \(v{\kern 1pt} {{{\text{|}}}_{{[0,T] \times \partial \Omega }}} = 0\). Additionally, assume that

\({\text{||}}{{v}_{x}}{\text{|}}{{{\text{|}}}_{{{{L}_{1}}(0,T;{{L}_{p}}{{{({{\Omega }_{0}})}}^{{N \times N}}})}}} + \;{\text{||}}v{\text{|}}{{{\text{|}}}_{{{{L}_{1}}(0,T;{{L}_{1}}{{{({{\Omega }_{0}})}}^{N}})}}} \leqslant M,\quad {\text{||}}v_{x}^{m}{\text{|}}{{{\text{|}}}_{{{{L}_{1}}(0,T;{{L}_{p}}{{{({{\Omega }_{0}})}}^{{N \times N}}})}}} + \;{\text{||}}{{{v}}^{m}}{\text{|}}{{{\text{|}}}_{{{{L}_{1}}(0,T;{{L}_{1}}{{{({{\Omega }_{0}})}}^{N}})}}} \leqslant M.\)

Suppose that \({{v}^{m}}\) converges to \(v\) in \({{L}_{1}}{{([0,T] \times {{\Omega }_{0}})}^{N}}\) as \(m \to + \infty \). Let \({{z}^{m}}(\tau ;t,x)\) and \(z(\tau ;t,x)\) be the RLFs associated with \({{v}^{m}}\) and \(v\), respectively. Then the sequence zm converges (up to a subsequence) to z with respect to the Lebesgue measure on the set \([0,T] \times {{\Omega }_{0}}\) uniformly in \(t \in [0,T]\).

Note that, in the case of a smooth \(u(t,x)\), the RLF associated with \(u(t,x)\) gives a classical solution \(z(\tau ;t,x)\) of the Cauchy problem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvyagin, V.G., Orlov, V.P. On Weak Solvability of a Flow Problem for Viscoelastic Fluid with Memory. Comput. Math. and Math. Phys. 63, 2090–2106 (2023). https://doi.org/10.1134/S0965542523110209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542523110209

Keywords:

Navigation