Skip to main content
Log in

Optimization of the Reachable Set of a Linear System with Respect to Another Set

  • OPTIMAL CONTROL
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Given a linear controlled autonomous system, we consider the problem of including a convex compact set in the reachable set of the system in the minimum time and the problem of determining the maximum time when the reachable set can be included in a convex compact set. Additionally, the initial point and the time at which the extreme time is achieved in each problem are determined. Each problem is discretized on a grid of unit vectors and is then reduced to a linear programming problem to find an approximate solution of the original problem. Additionally, error estimates for the solution are found. The problems are united by a common ideology going back to the problem of finding the Chebyshev center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. A. A. Liapounoff, “Sur les fonctions-vecteurs completement additives,” Izv. Akad. Nauk SSSR Ser. Mat. 4 (6), 465–478 (1940).

    MATH  MathSciNet  Google Scholar 

  2. E. B. Lee and L. Markus, Foundations of Optimal Control Theory (Wiley, New York, 1967).

    MATH  Google Scholar 

  3. R. Aumann, “Integrals of set-valued functions,” J. Math. Anal. Appl. 12 (1), 1–12 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  4. B. T. Polyak and G. Smirnov, “Large deviations for non-zero initial conditions in linear systems,” Automatica 74, 297–307 (2016).

    Article  MATH  MathSciNet  Google Scholar 

  5. J.-P. Aubin and A. Cellina, Differential Inclusions (Springer-Verlag, Berlin, 1984).

    Book  MATH  Google Scholar 

  6. J.-P. Aubin, “A survey of viability theory,” SIAM J. Control Optim. 28 (4), 749–788 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  7. H. J. Kelley, “Gradient theory of optimal flight paths,” ARS J. 30, 947–953 (1960). https://doi.org/10.2514/8.5282

    Article  MATH  Google Scholar 

  8. A. E. Bryson and W. F. Denham, “A steepest-ascent method for solving optimum programming problems,” J. Appl. Mech. 29, 247–257 (1962). https://www.gwern.net/docs/ai/1962-bryson.pdf

    Article  MATH  MathSciNet  Google Scholar 

  9. Ph. Eichmeir, Th. Lauß, S. Oberpeilsteiner, K. Nachbagauer, and W. Steiner, “The adjoint method for time-optimal control problems,” J. Comput. Nonlinear Dyn. 16 (2), 021003 (2021). https://doi.org/10.1115/1.4048808

  10. P. Cannarsa and C. Sinestrari, “Convexity properties of the minimum time function,” Calculus Var. Partial Differ. Equations 3 (3), 273–298 (1995). https://doi.org/10.1007/bf01189393

    Article  MATH  MathSciNet  Google Scholar 

  11. V. G. Boltyanskii, Mathematical Methods of Optimal Control (Holt, Rinehart and Winston, New York, 1971).

    Book  Google Scholar 

  12. E. S. Polovinkin, “Strongly convex analysis,” Sb. Math. 187 (2), 259–286 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  13. C. Le Guernic and A. Girard, “Reachability analysis of linear systems using support functions,” Nonlinear Anal. Hybrid Syst. 4, 250–262 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Althoff, G. Frehse, and A. Girard, “Set propagation techniques for reachability analysis,” Ann. Rev. Control Rob. Auton. Syst. 4, 369–395 (2021). https://doi.org/10.1146/annurev-control-071420-081941

    Article  Google Scholar 

  15. M. Serry and G. Reissig, “Over-approximating reachable tubes of linear time-varying systems” IEEE Trans. Autom. Control 67 (1), 443–450 (2022). https://doi.org/10.48550/arXiv.2102.04971

    Article  MATH  Google Scholar 

  16. A. B. Kurzhanski and P. Varaiya, Dynamics and Control of Trajectory Tubes (Birkhäuser/Springer, Basel, 2014).

    Book  MATH  Google Scholar 

  17. M. V. Balashov, “Covering a set by a convex compactum: Error estimates and computation,” Math. Notes 112 (3), 349–359 (2022).

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Diestel, Geometry of Banach Spaces: Selected Topics (Springer-Verlag, Berlin, 1975).

    Book  MATH  Google Scholar 

  19. H. Frankowska and C. Olech, “R-convexity of the integral of the set-valued functions,” Contributions to Analysis and Geometry (Johns Hopkins Univ. Press, Baltimore, MD, 1981), pp. 117–129.

    Google Scholar 

  20. E. S. Polovinkin and M. V. Balashov, Elements of Convex and Strongly Convex Analysis, 2nd ed. (Fizmatlit, Moscow, 2007) [in Russian].

    MATH  Google Scholar 

  21. M. V. Balashov and E. S. Polovinkin, “M-strongly convex subsets and their generating sets,” Sb. Math. 191 (1), 25–60 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  22. M. V. Balashov, “On polyhedral approximations in an n-dimensional space,” Comput. Math. Math. Phys. 56 (10), 1679–1685 (2016).

    Article  MATH  MathSciNet  Google Scholar 

  23. M. V. Balashov and D. Repovš, “Polyhedral approximations of strictly convex compacta,” J. Math. Anal. Appl. 374, 529–537 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  24. M. V. Balashov, “Strong convexity of reachable sets of linear systems,” Sb. Math. 213 (5), 604–623 (2022).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The results in Sections 2, 3 were obtained by M.V. Balashov at the Trapeznikov Institute of Control Sciences of the Russian Academy of Sciences, and his research was supported by the Russian Science Foundation, grant no. 22-11-00042, https://rscf.ru/en/project/22-11-00042/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Balashov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Ruzanova

Appendices

APPENDIX 1

1.1 INTERIOR OF A MULTIVALUED INTEGRAL IN THE PLANE CASE

Lemma 5. Suppose that the eigenvalues of the matrix \(A \in {{\mathbb{R}}^{{2 \times 2}}}\) are complex conjugate numbers \(\alpha \pm i\beta \) with \(\beta > 0\) and \({{e}^{{As}}} = {{e}^{{\alpha s}}}Q(\beta s)\), where \(Q(s) = \left( {\begin{array}{*{20}{c}} {\cos s}&{ - \sin s} \\ {\sin s}&{\cos s} \end{array}} \right)\). Let \(U \subset {{\mathbb{R}}^{2}}\) be a convex compact set, \(r > 0\), \(x \in {{\mathbb{R}}^{2}}\), \(\left\| x \right\| = r\), and the conditions \({{B}_{r}}(x) \subset U\) and \(0 \in {{B}_{r}}(x) \cap \partial U\) are satisfied. Define \(C = \min \{ {{e}^{{\alpha {{t}_{1}}}}},{{e}^{{\alpha {{t}_{2}}}}}\} \). Then, for any \(0 < {{t}_{1}} < {{t}_{2}}\),

$$\int\limits_{{{t}_{1}}}^{{{t}_{2}}} \,{{e}^{{As}}}U{\kern 1pt} ds \supset {{B}_{\delta }}(0),$$

where \(\delta = Cr({{t}_{2}} - {{t}_{1}})\left( {1 - \frac{{\sin \left( {\beta ({{t}_{2}} - {{t}_{1}}){\text{/}}2} \right)}}{{\beta ({{t}_{2}} - {{t}_{1}}){\text{/}}2}}} \right)\).

Note that the conditions of the lemma imply that the boundary of the set \(U\) is smooth at the point \(0\). Moreover, the point \(0 \in \partial U\) can be touched by a ball of radius \(r\) from within \(U\).

Proof. It is true that

$$\int\limits_{{{t}_{1}}}^{{{t}_{2}}} \,{{e}^{{As}}}U{\kern 1pt} ds \supset \int\limits_{{{t}_{1}}}^{{{t}_{2}}} \,{{e}^{{As}}}{{B}_{r}}(x){\kern 1pt} ds \supset C\int\limits_{{{t}_{1}}}^{{{t}_{2}}} \,Q(\beta s){{B}_{r}}(x){\kern 1pt} ds = C\int\limits_{{{t}_{1}}}^{{{t}_{2}}} \,Q(\beta s){{B}_{r}}(0){\kern 1pt} ds + C\int\limits_{{{t}_{1}}}^{{{t}_{2}}} \,Q(\beta s)x{\kern 1pt} ds.$$

In view of the equality \(Q(\beta s){{B}_{r}}(0) = {{B}_{r}}(0)\), the first term on the right-hand side is estimated as

$$C\int\limits_{{{t}_{1}}}^{{{t}_{2}}} \,Q(\beta s){{B}_{r}}(0){\kern 1pt} ds \supset Cr({{t}_{2}} - {{t}_{1}}){{B}_{1}}(0).$$

Let \(x = r{{(\cos \theta ,\sin \theta )}^{{\text{T}}}}\) for some \(\theta \in [0,2\pi )\). For the second term, we obtain

$$C\int\limits_{{{t}_{1}}}^{{{t}_{2}}} \,Q(\beta s)x{\kern 1pt} ds = \frac{{2Cr\sin (\beta ({{t}_{2}} - {{t}_{1}}){\text{/}}2)}}{\beta }\left( {\begin{array}{*{20}{c}} {\cos \left( {\frac{{\beta ({{t}_{2}} + {{t}_{1}})}}{2} + \theta } \right)} \\ {\sin \left( {\frac{{\beta ({{t}_{2}} + {{t}_{1}})}}{2} + \theta } \right)} \end{array}} \right) = :z.$$

For the point \(z\), we have \(\left\| z \right\| = \frac{{2Cr\sin (\beta ({{t}_{2}} - {{t}_{1}}){\text{/}}2)}}{\beta }\), whence

$$\delta \geqslant Cr({{t}_{2}} - {{t}_{1}}) - \left\| z \right\| = Cr({{t}_{2}} - {{t}_{1}})\left( {1 - \frac{{\sin \left( {\beta ({{t}_{2}} - {{t}_{1}}){\text{/}}2} \right)}}{{\beta ({{t}_{2}} - {{t}_{1}}){\text{/}}2}}} \right).$$

Lemma 6. Suppose that the eigenvalues of the matrix \(A \in {{\mathbb{R}}^{{2 \times 2}}}\) are complex conjugate numbers \(\alpha \pm i\beta \) with \(\beta > 0\) and \({{e}^{{As}}} = {{e}^{{\alpha s}}}Q(\beta s)\), where \(Q(s)\) is defined in Lemma \(5\). Let \(U \subset {{\mathbb{R}}^{2}}\) be a convex compact set, \(r > 0\), \(\theta \in [0,2\pi )\), and \(I = {\text{co}}\{ \pm r{{(\cos \theta ,\sin \theta )}^{{\text{T}}}}\} \subset \partial U\). Define \(C = \min \{ {{e}^{{\alpha {{t}_{1}}}}},{{e}^{{\alpha {{t}_{2}}}}}\} \). Then, for any \(0 < {{t}_{1}} < {{t}_{2}}\) with \({{t}_{2}} - {{t}_{1}} < \pi {\text{/}}\beta \),

$$\int\limits_{{{t}_{1}}}^{{{t}_{2}}} \,{{e}^{{As}}}U{\kern 1pt} ds \supset {{B}_{\delta }}(0),$$

where \(\delta = \frac{2}{\beta }Cr\left( {1 - \cos \left( {\frac{1}{2}\beta ({{t}_{2}} - {{t}_{1}})} \right)} \right)\).

Proof. We have the chain of inclusions \(\int_{{{t}_{1}}}^{{{t}_{2}}} {{{e}^{{As}}}U{\kern 1pt} ds} \supset \int_{{{t}_{1}}}^{{{t}_{2}}} {{{e}^{{As}}}I{\kern 1pt} ds} \supset C\int_{{{t}_{1}}}^{{{t}_{2}}} {Q(\beta s)I{\kern 1pt} ds} \). Let \(p = (\cos \varphi ,\sin \varphi {{)}^{{\text{T}}}}\) be a unit vector. Then

$$s\left( {p,\int\limits_{{{t}_{1}}}^{{{t}_{2}}} \,{{e}^{{As}}}U{\kern 1pt} ds} \right) \geqslant C\int\limits_{{{t}_{1}}}^{{{t}_{2}}} \,s(p,Q(\beta s)I){\kern 1pt} ds = Cr\int\limits_{{{t}_{1}}}^{{{t}_{2}}} \left| {\sin (\beta s + \psi )} \right|{\kern 1pt} ds,$$

where \(\psi = \theta - \varphi + \pi {\text{/}}2\). Making the substitution \(\tau = \beta s + \psi \), for \({{T}_{i}} = \beta {{t}_{i}} + \psi \), \(i = 1,2\), we obtain \(s\left( {p,\int_{{{t}_{1}}}^{{{t}_{2}}} {{{e}^{{As}}}U{\kern 1pt} ds} } \right) \geqslant \frac{1}{\beta }Cr\int_{{{T}_{1}}}^{{{T}_{2}}} {\left| {\sin \tau } \right|} {\kern 1pt} d\tau \). Since \({{T}_{2}} - {{T}_{1}} < \pi \), it follows that

$$\int\limits_{{{T}_{1}}}^{{{T}_{2}}} \left| {\sin \tau } \right|{\kern 1pt} d\tau \geqslant 2\int\limits_0^{\frac{1}{2}({{T}_{2}} - {{T}_{1}})} \sin \tau {\kern 1pt} d\tau = 2\left( {1 - \cos \left( {\frac{1}{2}({{T}_{2}} - {{T}_{1}})} \right)} \right).$$

Substituting this estimate into the preceding inequality yields the assertion of the lemma.

Note that Lemmas 6 and 5 give the second and third orders of the ball’s radius with respect to \({{t}_{2}} - {{t}_{1}}\), respectively.

Let \(U \subset {{\mathbb{R}}^{2}}\) be a convex compact set. Assume that there exists a number \(\rho > 0\) such that \(U \cap {{B}_{\rho }}(0) \supset H \cap {{B}_{\rho }}(0)\), where \(H = \{ x \in {{\mathbb{R}}^{2}}\,|\,(p,x) \leqslant 0\} \) is a half-space for some unit vector \(p \in {{\mathbb{R}}^{2}}\). Then \(\int_{{{t}_{1}}}^{{{t}_{2}}} {{{e}^{{As}}}U{\kern 1pt} ds} \asymp {{({{t}_{2}} - {{t}_{1}})}^{2}}\), \({{t}_{2}} - {{t}_{1}} \to + 0\).

Indeed, let \(I\) be a segment centered at the origin such that \(I \subset \partial H.\) Consider the disk \({{B}_{R}}(x)\), \(\left\| x \right\| = R\), that is tangent to \(\partial H\) at the point \(0\) and such that \(I + {{B}_{R}}(x) \supset U\). Such \(R\) and \(I\) can be chosen, since \(U\) is compact and \(\partial H\) is the supporting line of \(U\) at the point \(0\). Then

$$\int\limits_{{{t}_{1}}}^{{{t}_{2}}} \,{{e}^{{As}}}U{\kern 1pt} ds \subset \int\limits_{{{t}_{1}}}^{{{t}_{2}}} \,{{e}^{{As}}}I{\kern 1pt} ds + \int\limits_{{{t}_{1}}}^{{{t}_{2}}} \,{{e}^{{As}}}{{B}_{R}}(x){\kern 1pt} ds.$$

By Lemmas 5 and 6, the terms on the right-hand side of this formula have the order \({{({{t}_{2}} - {{t}_{1}})}^{2}} + {{({{t}_{2}} - {{t}_{1}})}^{3}} \asymp {{({{t}_{2}} - {{t}_{1}})}^{2}}\), \({{t}_{2}} - {{t}_{1}} \to + 0\).

Thus, the presence of a segment in U, \(0 \in \partial U,\) centered at 0 is more important than the bodiliness of \(U\) for the ball centered at 0 inscribed in the integral to be maximal.

Lemma 7. Let \({{e}^{{At}}} = \left( {\begin{array}{*{20}{c}} {{{e}^{{{{\lambda }_{1}}t}}}}&0 \\ 0&{{{e}^{{{{\lambda }_{2}}t}}}} \end{array}} \right)\), where \({{\lambda }_{1}} > {{\lambda }_{2}}\). Define \(\lambda = {{\lambda }_{1}} - {{\lambda }_{2}} > 0\) and \(C = \min \{ {{e}^{{{{\lambda }_{2}}{{t}_{1}}}}},{{e}^{{{{\lambda }_{2}}{{t}_{2}}}}}\} \). Let \(U \subset {{\mathbb{R}}^{2}}\) be a convex compact set and \(I \subset \partial U\), where \(I = {\text{co}}{\kern 1pt} {\kern 1pt} \left( { \pm r{{{(\cos \theta ,\sin \theta )}}^{{\text{T}}}}} \right)\) for \(r > 0\), \(\theta \in (0,\pi )\), \(\theta \ne \pi {\text{/}}2\). Then, for any \(0 < {{t}_{1}} < {{t}_{2}}\),

$$\int\limits_{{{t}_{1}}}^{{{t}_{2}}} \,{{e}^{{As}}}U{\kern 1pt} ds \supset {{B}_{\delta }}(0),$$

where \(\delta = Cr\frac{{\lambda {{K}^{2}}\sin \theta }}{{{{\pi }^{2}}}}{{({{t}_{2}} - {{t}_{1}})}^{2}}.\) Here, \(K = K({{t}_{1}},{{t}_{2}},\lambda ,\theta ) = \mathop {\min }\limits_{i = 1,2} \left\{ {\frac{{{{e}^{{\lambda {{t}_{i}}}}}\left| {\cot \theta } \right|}}{{1 + {{e}^{{2\lambda {{t}_{i}}}}}{{{\cot }}^{2}}\theta }}} \right\}\).

Proof. Let \(M = \int_{{{t}_{1}}}^{{{t}_{2}}} {{{e}^{{As}}}U{\kern 1pt} ds} \). Then

$$M \supset \int\limits_{{{t}_{1}}}^{{{t}_{2}}} \,{{e}^{{{{\lambda }_{2}}s}}}\left( {\begin{array}{*{20}{c}} {{{e}^{{\lambda s}}}}&0 \\ 0&1 \end{array}} \right)I{\kern 1pt} ds \supset Cr\int\limits_{{{t}_{1}}}^{{{t}_{2}}} \,{\text{co}}{\kern 1pt} {\kern 1pt} \left( { \pm {{{({{e}^{{\lambda s}}}\cos \theta ,\sin \theta )}}^{{\text{T}}}}} \right){\kern 1pt} ds.$$

Let \(p = (\cos \varphi ,\sin \varphi {{)}^{{\text{T}}}}\) be an unit vector, where \(\varphi \in [0,2\pi )\). Then, for

$$J = \int\limits_{{{t}_{1}}}^{{{t}_{2}}} \left| {{{e}^{{\lambda s}}}\cos \varphi \cos \theta + \sin \varphi \sin \theta } \right|{\kern 1pt} ds,$$

we have \(s(p,M) \geqslant CrJ.\) Let us estimate \(J\) from below.

1. Consider the case \(\theta \in \left( {0,\frac{1}{2}\pi } \right)\). Here,

$$J = \int\limits_{{{t}_{1}}}^{{{t}_{2}}} \sqrt {{{{\sin }}^{2}}\theta + {{{\cos }}^{2}}\theta {{e}^{{2\lambda s}}}} {\kern 1pt} \left| {\sin (\alpha (s) + \varphi )} \right|{\kern 1pt} ds,$$

where \(\alpha (s) = {\text{arctan}}{\kern 1pt} {\kern 1pt} ({{e}^{{\lambda s}}}\theta )\). We introduce the new variable \(\tau = \alpha (s) + \varphi \), \(ds = \frac{{d\tau }}{{\alpha {\kern 1pt} '(s)}} = \frac{{1 + {{e}^{{2\lambda s}}}{{{\cot }}^{2}}\theta }}{{\lambda {{e}^{{\lambda s}}}\cot \theta }}{\kern 1pt} d\tau \). In view of the inclusion \(\alpha (s) \in \left( {0,\frac{1}{2}\pi } \right)\), it follows that

$$J = \frac{{\sin \theta }}{\lambda }\int\limits_{\alpha ({{t}_{1}}) + \varphi }^{\alpha ({{t}_{2}}) + \varphi } \frac{{{{{(1 + {{{\tan }}^{2}}\alpha (s))}}^{{3/2}}}}}{{\tan \alpha (s)}}\left| {\sin \tau } \right|d\tau = \frac{{\sin \theta }}{\lambda }\int\limits_{\alpha ({{t}_{1}}) + \varphi }^{\alpha ({{t}_{2}}) + \varphi } \frac{{\left| {\sin \tau } \right|}}{{(\tau - \varphi ){{{\cos }}^{3}}(\tau - \varphi )}}d\tau $$
$$ \geqslant \frac{{\sin \theta }}{\lambda }\int\limits_{\alpha ({{t}_{1}}) + \varphi }^{\alpha ({{t}_{2}}) + \varphi } \left| {\sin \tau } \right|{\kern 1pt} d\tau \geqslant \frac{{2\sin \theta }}{\lambda }\int\limits_0^{\frac{1}{2}(\alpha ({{t}_{2}}) - \alpha ({{t}_{1}}))} \sin \tau {\kern 1pt} d\tau = \frac{{4\sin \theta }}{\lambda }{{\sin }^{2}}\left( {\frac{{\alpha ({{t}_{2}}) - \alpha ({{t}_{1}})}}{4}} \right)$$
$$ \geqslant \frac{{4\sin \theta }}{\lambda }\frac{4}{{{{\pi }^{2}}}}\frac{1}{{{{4}^{2}}}}{{(\alpha ({{t}_{2}}) - \alpha ({{t}_{1}}))}^{2}}\frac{{\sin \theta }}{{\lambda {{\pi }^{2}}}}{{(\alpha ({{t}_{2}}) - \alpha ({{t}_{1}}))}^{2}}.$$

By the mean-value theorem, there exists \(\xi \in [{{t}_{1}},{{t}_{2}}]\) such that

$$\left| {\alpha ({{t}_{2}}) - \alpha ({{t}_{1}})} \right| = \frac{{\lambda {{e}^{{\lambda \xi }}}\left| {\cot \theta } \right|}}{{1 + {{e}^{{2\lambda \xi }}}{{{\cot }}^{2}}\theta }}({{t}_{2}} - {{t}_{1}}) \geqslant \lambda K({{t}_{2}} - {{t}_{1}}),$$

which yields the assertion of the lemma.

2. Suppose that \(\theta \in \left( {\frac{1}{2}\pi ,\pi } \right)\). Making the substitutions \(\psi = \pi - \theta ,\) \(\alpha (s) = {\text{arctan}}{\kern 1pt} {\kern 1pt} ({{e}^{{\lambda s}}}\cot \psi ),\) and \(\tau = \alpha (s) + \varphi \) brings the integral \(J\) to the form

$$\begin{gathered} J = \frac{{\sin \psi }}{\lambda }\int\limits_{\alpha ({{t}_{1}}) + \varphi }^{\alpha ({{t}_{2}}) + \varphi } \frac{{{{{(1 + {{{\tan }}^{2}}\alpha (s))}}^{{3/2}}}}}{{\tan \alpha (s)}}\left| {\cos (\alpha (s) + \varphi )} \right|d\tau \geqslant \frac{{\sin \theta }}{\lambda }\int\limits_{\alpha ({{t}_{1}}) + \varphi - \frac{1}{2}\pi }^{\alpha ({{t}_{2}}) + \varphi - \frac{1}{2}\pi } \left| {\sin \tau } \right|d\tau \\ \geqslant \frac{{2\sin \theta }}{\lambda }\int\limits_0^{\frac{1}{2}(\alpha ({{t}_{2}}) - \alpha ({{t}_{1}}))} \left| {\sin \tau } \right|d\tau . \\ \end{gathered} $$

The rest of the proof is the same as in item 1.

Lemma 8. Let \({{e}^{{At}}} = {{e}^{{\lambda t}}}\left( {\begin{array}{*{20}{c}} 1&t \\ 0&1 \end{array}} \right)\). Define \(C = \min \{ {{e}^{{\lambda {{t}_{1}}}}},{{e}^{{\lambda {{t}_{2}}}}}\} \). Let \(U \subset {{\mathbb{R}}^{2}}\) be a convex compact set and \(I \subset \partial U,\) where \(I = {\text{co}}{\kern 1pt} {\kern 1pt} \left( { \pm r{{{(\cos \theta ,\sin \theta )}}^{{\text{T}}}}} \right)\) for \(r > 0\) and \(\theta \in (0,\pi )\). Then, for any \(0 < {{t}_{1}} < {{t}_{2}}\),

$$\int\limits_{{{t}_{1}}}^{{{t}_{2}}} \,{{e}^{{As}}}U{\kern 1pt} ds \supset {{B}_{\delta }}(0),$$

where \(\delta = Cr\frac{{{{K}^{2}}\sin \theta }}{{{{\pi }^{2}}}}{{({{t}_{2}} - {{t}_{1}})}^{2}}.\) Here, \(K = K({{t}_{1}},{{t}_{2}},\theta ) = \mathop {\min }\limits_{i = 1,2} \left\{ {\frac{1}{{1 + {{{({{t}_{i}} + \cot \theta )}}^{2}}}}} \right\}\).

Proof. Repeating the argument used in Lemma 7, for \(M = \int_{{{t}_{1}}}^{{{t}_{2}}} {{{e}^{{As}}}U{\kern 1pt} ds} ,\) \(p = (\cos \varphi ,\sin \varphi ),\) and J = \(\int_{{{t}_{1}}}^{{{t}_{2}}} {\left| {(\cos \theta + s\sin \theta )\cos \varphi + \sin \theta \sin \varphi } \right|ds} \), we have \(s(p,M) \geqslant CrJ\). For \(J,\) we obtain J = \(\sin \theta \int_{{{t}_{1}}}^{{{t}_{2}}} {\sqrt {1 + {{{(s + \cot \theta )}}^{2}}} } \left| {\sin (\alpha (s) + \varphi )} \right|ds\), where \(\alpha (s) = {\text{arctan}}{\kern 1pt} (s + \cot \theta )\). Making the substitution \(\tau = \alpha (s) + \varphi \) yields

$$J = \sin \theta \int\limits_{\alpha ({{t}_{1}}) + \varphi }^{\alpha ({{t}_{2}}) + \varphi } {{(1 + {{(s + \cot \theta )}^{2}})}^{{3/2}}}\left| {\sin \tau } \right|d\tau = \sin \theta \int\limits_{\alpha ({{t}_{1}}) + \varphi }^{\alpha ({{t}_{2}}) + \varphi } {{(1 + ta{{n}^{2}}\alpha (s))}^{{3/2}}}\left| {\sin \tau } \right|d\tau $$
$$ = \sin \theta \int\limits_{\alpha ({{t}_{1}}) + \varphi }^{\alpha ({{t}_{2}}) + \varphi } \frac{{{\text{|}}\sin \tau {\text{|}}}}{{\left| {{{{\cos }}^{3}}(\tau - \varphi )} \right|}}d\tau \geqslant 2\sin \theta \int\limits_0^{\frac{1}{2}(\alpha ({{t}_{2}}) - \alpha ({{t}_{1}}))} \sin \tau {\kern 1pt} d\tau = 4\sin \theta {{\sin }^{2}}\left( {\frac{{\alpha ({{t}_{2}}) - \alpha ({{t}_{1}})}}{4}} \right).$$

It follows that \(J \geqslant 4\sin \theta \frac{4}{{{{\pi }^{2}}}}\frac{{{{{(\alpha ({{t}_{2}}) - \alpha ({{t}_{1}}))}}^{2}}}}{{{{4}^{2}}}}\). Applying the mean-value theorem completes the proof.

APPENDIX 2

1.1 AN EXAMPLE OF A REACHABLE SET

For a nontrivial linear system, we give an example of a reachable set that is strictly convex, but not strongly convex. Recall that \(f(s) \asymp g(s)\), \(s \to 0\) if there exists \(\delta > 0\) such that \({{C}_{1}} \leqslant \frac{{f(s)}}{{g(s)}} \leqslant {{C}_{2}}\) for all \(s \in ( - \delta ,\delta )\) and some \({{C}_{2}} \geqslant {{C}_{1}} > 0\). Let \(U = {\text{co}}{\kern 1pt} {\kern 1pt} \{ (0,0, \pm 1)\} \), \(\lambda \in \mathbb{R}\), \(A = \left[ {\begin{array}{*{20}{c}} \lambda &1&0 \\ 0&\lambda &1 \\ 0&0&\lambda \end{array}} \right]\), and \({{e}^{{As}}} = {{e}^{{\lambda s}}}\left[ {\begin{array}{*{20}{c}} 1&s&{\frac{1}{2}{{s}^{2}}} \\ 0&1&s \\ 0&0&1 \end{array}} \right]\). For \(\varepsilon \in (0,1)\), we consider the vectors \(p = \frac{1}{3}(2, - 2,1)\) and \(q = q(\varepsilon ) = \frac{{(2, - 2,1 - \varepsilon )}}{{\sqrt {9 - 2\varepsilon + {{\varepsilon }^{2}}} }}\). It is easy to see that \(\left\| {p - q} \right\| \asymp \varepsilon \), \(\varepsilon \to 0\), and, for \(t > 1 + \sqrt \varepsilon \) (\({{s}_{{1,2}}} = 1 \pm \sqrt \varepsilon \) are the roots of the equation \(({{e}^{{{{A}^{{\text{T}}}}s}}}q(\varepsilon {{),(0,0,1)}^{{\text{T}}}}) = 0\))

$$M(t)(p) - M(t)(q) = \int\limits_{1 - \sqrt \varepsilon }^{1 + \sqrt \varepsilon } {{e}^{{\lambda s}}}{{({{s}^{2}},2s,2)}^{{\text{T}}}}{\kern 1pt} ds,\quad {\text{||}}M(t)(p) - M(t)(q){\text{||}} \geqslant \int\limits_{1 - \sqrt \varepsilon }^{1 + \sqrt \varepsilon } 2{{e}^{{\lambda s}}}{\kern 1pt} ds \asymp \sqrt \varepsilon ,\quad \varepsilon \to 0.$$

For any fixed \(R > 0\), the value of \(\sqrt \varepsilon {\text{/}}(R\varepsilon )\) is not bounded above for small \(\varepsilon > 0\). Therefore, \(M(t)\) is not strongly convex, since, for a strongly convex set with radius \(R > 0\), its support elements have to satisfy the Lipschitz condition on the unit sphere with constant \(R\) (see [19]; [12], Corollary 4). Note that the set \(M(t)\) is strictly convex, since for any vector \(p \in \partial {{B}_{1}}(0)\) the set \(({{e}^{{As}}}U)(p)\) is a singleton for all \(s \in [0,t]\), except for at most two values.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balashov, M.V., Kamalov, R.A. Optimization of the Reachable Set of a Linear System with Respect to Another Set. Comput. Math. and Math. Phys. 63, 751–770 (2023). https://doi.org/10.1134/S0965542523050056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542523050056

Keywords:

Navigation