Skip to main content
Log in

New Boundary Conditions for One-Dimensional Network Models of Hemodynamics

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

New boundary conditions in the regions of vessel junctions for a one-dimensional network model of hemodynamics are proposed. It is shown that these conditions ensure the continuity of the solution and its derivatives at the points of vessel junctions. In the asymptotic limit, they give solutions that coincide with the solution in one continuous vessel. Nonreflecting boundary conditions at the endpoints of the terminal vessels are proposed. Results of numerical experiments that confirm the results of theoretical analysis are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. M. Y. Mamatyukov, A. K. Khe, D. V. Parshin, P. I. Plotnikov, and A. P. Chupakhin," On the energy of a hydroelastic system: Blood flow in an artery with a cerebral aneurysm," J. Appl. Mech. Tech. Phys. 60, 977–988 (2019).

    Article  MathSciNet  Google Scholar 

  2. M. V. Abakumov, K. V. Gavrilyuk, N. B. Esikova, V. B. Koshelev, A. V. Lukshin, S. I. Mukhin, N. V. Sosnin, V. F. Tishkin, and A. P. Favorskii, “A mathematical model of hemodynamics of cardio-vascular system,” Differ. Uravn. 33, 892–898 (1997).

    MathSciNet  MATH  Google Scholar 

  3. A. S. Kholodov, “Dynamic models of external respiration and blood circulation with account connectedness and transfer of substances,” in Computer Models and Successes of Medicine (Nauka, Moscow, 2001) [in Russian], pp. 127–163.

    Google Scholar 

  4. A. G. Borzov, S. I. Mukhin, and N. V. Sosnin, “Conservative schemes of matter transport in a system of vessels closed by the heart,” Differ. Equations 48, 919–928 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Formaggia, A. Quarteroni, and A. Veneziani, Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System (Springer, Heidelberg, 2009).

    Book  MATH  Google Scholar 

  6. Yu. Vassilevski, M. Olshanskii, S. Simakov, A. Kolobov, and A. Danilov, Personalized Computational Hemodynamics: Models, Methods, and Applications for Vascular Surgery and Antitumor Therapy (Academic, London, 2020).

    Google Scholar 

  7. S. S. Simakov, “Spatially averaged haemodynamic models for different parts of cardiovascular system,” Russ. J. Numer. Anal. Math. Modelling 35, 285–294 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  8. N. Bessonov, A. Sequeira, S. Simakov, Yu. Vassilevski, and V. Volpert, “Methods of blood flow modelling,” Math. Modelling Nat. Phenomena 11, 1–25 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. V. Abakumov, I. V. Ashmetkov, N. B. Esikova, V. B. Koshelev, S. I. Mukhin, N. V. Sosnin, V. F. Tishkin, A. P. Favorskii, and A. B. Khrulenko, “Methodology of mathematical modeling of cardiovascular system, Mat. Modelling 12 (2), 106–117 (2000).

    MATH  Google Scholar 

  10. A. Ya. Bunicheva, S. I. Mukhin, N. V. Sosnin, and N. B. Khrulenko, “Mathematical modeling of quasi-one-dimensional hemodynamics,” Comput. Math. Math. Phys. 55, 1381–1392 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. S. Simakov, “Lumped parameter heart model with valve dynamics,” Russ. J. Numer. Anal. Mathematical Modelling, 34, 289–300 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. S. Olufsen, C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, and J. Larsen, “Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions,” Ann. Biomed. Eng. 28, 1281–1299 (2000).

    Article  Google Scholar 

  13. J. P. Mynard and J. J. Smolich, “One-dimensional haemodynamic modeling and wave dynamics in the entire adult circulation,” Ann. Biomed. Eng. 43, 1443–1460 (2015).

    Article  Google Scholar 

  14. D. Guan, F. Liang, and P. A. Gremaud, “Comparison of the Windkessel model and structured-tree model applied to prescribe outflow boundary conditions for a one-dimensional arterial tree model,” J. Biomech. 49, 1583–1592 (2016).

    Article  Google Scholar 

  15. R. F. Schmidt and G. Thews, Human Physiology (Springer, Berlin, 1989).

    Book  Google Scholar 

  16. W. F. Ganong, Review of Medical Physiology (Appleton and Lange, Stamford, CT, 1999).

    Google Scholar 

  17. A. P. Avolio, “Multi-branched model of the human arterial system,” Med. & Biol. Eng. & Comput. 18, 709–718 (1980).

    Article  Google Scholar 

  18. J. Alastruey, K. H. Parker, J. Peiró, and S. J. Sherwin, “Analysing the pattern of pulse waves in arterial networks: a time-domain study,” J. Eng. Math. 64, 331–351 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  19. P. J. Blanco, S. M. Watanabe, M. A. R. F. Passos, P. A. Lemos, and R. A. Feijóo, “An anatomically detailed arterial network model for one-dimensional computational hemodynamics,” IEEE Trans. Biomed. Eng. 62, 736–753 (2015).

    Article  Google Scholar 

  20. Y. V. Vassilevski, A. A. Danilov, S. S. Simakov, T. M. Gamilov, Y. A. Ivanov, and R. A. Pryamonosov, “Patient-specific anatomical models in human physiology,” Russ J. Numer. Anal. Math. Modelling 30 (3), 185–201 (2015).

    Article  MathSciNet  Google Scholar 

  21. A. Danilov, Yu. Ivanov, R. Pryamonosov, and Yu. Vassilevski, “Methods of graph network reconstruction in personalized medicine,” Int. J. Numer. Methods Biomed. Eng. 32 (8), e02754 (2016).

    Article  Google Scholar 

  22. N. Xiao, J. Alastruey-Arimon, and C. A. Figueroa, “A systematic comparison between 1D and 3D hemodynamics in compliant arterial models,” Int. J. Numer. Methods Biomed. Eng. 30 (2), 204–231 (2014).

    Article  MathSciNet  Google Scholar 

  23. D. G. Gognieva, E. S. Pershina, Yu. O. Mitina, T. M. Gamilov, R. A. Pryamonosov, N. A. Gogiberidze, A. N. Rozhkov, Yu. V. Vasilevskii, S. S. Simakov, F. Liang, V. E. Sinitsyn, V. B. Betelin, D. Yu. Shchekochikhin, A. L. Syrkin, and F. Yu. Kopylov, “Comparison of diagnostic efficiency of methodologies of noninvasive computation of fractional blood flow reserve based on constructing a one-dimensional and three-dimensional mathematical models,” Kardiovaskulyarnaya terapiya profilaktika 19 (2), 2303 (2020).

  24. J. Alastruey, A. W. Khir, K. S. Matthys, P. Segers, S. J. Sherwin, P. R. Verdonck, K. H. Parker, and J. Peiro, “Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements,” J. Biomech. 44, 2250–2258 (2011).

    Article  Google Scholar 

  25. E. Boileau, P. Nithiarasu, P. J. Blanco, L. O. Müller, F. E. Fossan, L. R. Hellevik, W. P. Donders, W. Huberts, M. Willemet, and J. Alastruey, “A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling,” Int. J. Numer. Methods Biomed. Eng. 31 (10), e02732 (2015).

    Article  MathSciNet  Google Scholar 

  26. T. Dobroserdova, S. Simakov, T. Gamilov, R. Pryamonosov, and E. Sakharova, “Patient-specific blood flow modelling for medical applications,” MATEC Web of Conferences 76, 05001 (2016).

  27. K. Sughimoto, F. Liang, Y. Takahara, K. Mogi, K. Yamazaki, S. Takagi, and H. Liu, “Assessment of cardiovascular function by combining clinical data with a computational model of the cardiovascular system,” J. Thoracic Cardiovasc. Surgery 145, 1367–1372 (2013).

    Article  Google Scholar 

  28. J. M. Carson, S. Pant, C. Roobottom, R. Alcock, P. Javier Blanco, C. Alberto Bulant, Y. Vassilevski, S. Simakov, T. Gamilov, R. Pryamonosov, F. Liang, X. Ge, Y. Liu, and P. Nithiarasu, “Non-invasive coronary CT angiography-derived fractional flow reserve: A benchmark study comparing the diagnostic performance of four different computational methodologies,” Int. J. Numer. Methods Biomed. Eng. 35 (1), e03235 (2019).

    Article  MathSciNet  Google Scholar 

  29. D. Gognieva, Y. Mitina, T. Gamilov, R. Pryamonosov, Y. Vasilevskii, S. Simakov, F. Liang, S. Ternovoy, N. Serova, E. Tebenkova, V. Sinitsyn, E. Pershina, S. Abugov, G. Mardanian, N. Zakarian, V. Kirakosian, V. Betelin, D. Shchekochikhin, A. Syrkin, and P. Kopylov, “Noninvasive assessment of the fractional flow reserve with the CT FFRc 1D method: Final results of a pilot study,” Global Heart 16 (1), 1 (2021).

    Article  Google Scholar 

  30. A. Golov, S. Simakov, Y. N. Soe, R. Pryamonosov, O. Mynbaev, and A. Kholodov, “Multiscale CT-based computational modeling of alveolar gas exchange during artificial lung ventilation, cluster (Biot) and periodic (Cheyne–Stokes) breathings and bronchial asthma attack,” Computation 5 (1), 11 (2017).

    Article  Google Scholar 

  31. A. Mozokhina and S. I. Mukhin, “Quasi-one-dimensional flow of a fluid with anisotropic viscosity in a pulsating vessel,” Differ. Equations 54, 938–944 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  32. R. Savinkov, D. Grebennikov, D. Puchkova, V. Chereshnev, I. Sazonov, and G. Bocharov, “Graph theory for modeling and analysis of the human lymphatic system,” Mathematics 8 (12), 2236 (2020).

    Article  Google Scholar 

  33. A. Mozokhina and R. Savinkov, “Mathematical modelling of the structure and function of the lymphatic system,” Mathematics 8, 1467 (2020).

    Article  Google Scholar 

  34. Ya. A. Kholodov, “Development of network computational models for the study of nonlinear wave problems on graphs,” Komp’yut. Issled. Modelir. 11, 777–814 (2019).

    Google Scholar 

  35. A. B. Poroshina and V. V. Vedeneev, “Existence and uniqueness of steady state of elastic tubes conveying power law fluid,” Russ J. Biomech. 22 (2), 169–193 (2018).

    Google Scholar 

  36. G. A. Holzapfel, “A new constitutive framework for arterial wall mechanics and a comparative study of material models,” J. Elasticity 61, 1–48 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  37. P. A. Sackinger, P. R. Schunk, and R. R. Rao, “A Newton–Raphson pseudo-solid domain mapping technique for free and moving boundary problems: A finite element implementation,” J. Comput. Phys. 125, 83–103 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  38. M. E. Rosar and C. S. Peskin, “Fluid flow in collapsible elastic tubes: A three-dimensional numerical model,” New York J. Math. 7, 281–302 (2001).

    MathSciNet  MATH  Google Scholar 

  39. A. Quarteroni, M. Tuveri, and A. Veneziani, “Computational vascular fluid dynamics: Problems, models and methods,” Comput. Visualization Sci. 2, 163–197 (2000).

    Article  MATH  Google Scholar 

  40. A. Danilov, A. Lozovskiy, M. Olshanskii, and Y. Vassilevski, “A finite element method for the Navier–Stokes equations in moving domain with application to hemodynamics of the left ventricle,” Russ J. Numer. Anal. Math. Modelling 32 (4), 225–236 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  41. Y. Vassilevski, A. Danilov, A. Lozovskiy, M. Olshanskii, V. Salamatova, S. M. Chang, Y. Han, and C. H. Lin, “A stable method for 4D CT-based CFD simulation in the right ventricle of a TGA patient,” Russ J. Numer. Anal. Math. Modelling 35 (5), 315–324 (2020).

    Article  MathSciNet  Google Scholar 

  42. T. Dobroserdova, M. Olshanskii, and S. Simakov, “Multiscale coupling of compliant and rigid walls blood flow models,” Int. J. Numer. Methods Fluids 82, 799–817 (2006).

    Article  MathSciNet  Google Scholar 

  43. S. Čanić and E. H. Kim, “Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels,” Math. Methods Appl. Sci. 26, 1161–1186 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  44. Yu. V. Vassilevski, V. Yu. Salamatova, and S. S. Simakov, “On the elasticity of blood vessels in one-dimensional problems of hemodynamics,” Comput. Math. Math. Phys. 55, 1567–1578 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  45. F. N. Van de Vosse and N. Stergiopulos, “Pulse wave propagation in the arterial tree,” Ann. Rev. Fluid Mech. 436, 467–499 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  46. S. S. Simakov, “Modern methods in mathematical modeling of blood flow using averaged models,” Kompyut. Issledovaniya Modelir. 10, 581–604 (2018).

    Google Scholar 

  47. L. O. Müller and E. Toro, “A global multiscale mathematical model for the human circulation with emphasis on the venous system,” Int. J. Numer. Methods Biomed. Eng. 30, 681–725 (2014).

    Article  MathSciNet  Google Scholar 

  48. S. Sherwin, V. Franke, J. Peiró, and K. Parker, “One-dimensional modelling of a vascular network in space-time variables,” J. Eng. Math. 47, 217–250 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  49. S. Simakov and T. Gamilov, “Computational study of the cerebral circulation accounting for the patient-specific anatomical features,” Proc. of the Smart innovation, systems and technologies International conference on 50 years of the development of grid-characteristic method, GCM50, 2018, Vol. 133, pp. 309–330.

  50. V. Milisic and A. Quarteroni, “Analysis of lumped parameter models for blood flow simulations and their relation with 1D models,” ESAIM: Math. Modelling Numer. Anal. 38, 613–632 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  51. K. M. Magomedov and A. S. Kholodov, Grid-Characteristic Numerical Methods (Urait, Moscow, 2018) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 21-41-00029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Simakov.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simakov, S.S. New Boundary Conditions for One-Dimensional Network Models of Hemodynamics. Comput. Math. and Math. Phys. 61, 2102–2117 (2021). https://doi.org/10.1134/S0965542521120125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542521120125

Keywords:

Navigation