Skip to main content
Log in

Semi-Classical Models of Quantum Nanoplasmonics Based on the Discrete Source Method (Review)

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Works concerning the quantum effect of nonlocal screening on field characteristics in the problem of scattering a plane wave by nanoscale structures, including ones located near a transparent substrate, are reviewed. Efficient computer models for analyzing such structures are constructed by applying the discrete source method. The nonlocality effect is studied using the generalized nonlocal optical response model. The field characteristics of nonspherical layered nanoparticles deposited in an active medium or on the surface of a transparent substrate are considered. It is shown that nonlocality has a large effect on the optical characteristics in the far- and near-field regions. It is established that the nonlocality effect leads to a decrease in the intensity of surface plasmon resonance by up to 2.5 times under a small shift toward short wavelengths. In the presence of a substrate, the excitation of particles by a propagating or an evanescent wave is considered. It is shown that the largest effect is exhibited for nonspherical layered particles located in the evanescent wave region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  2. M. Pelton and G. Bryant, Introduction to Metal-Nanoparticle Plasmonics (Wiley, New York, 2013).

    Google Scholar 

  3. M. I. Stockman, “Nanoplasmonic sensing and detection,” Science 348, 287–288 (2015).

    Article  Google Scholar 

  4. R. F. Oulton, V. J. Sorger, T. Zentgraf, et al., “Plasmon lasers at deep subwavelength scale,” Nature 461, 629 (2009).

    Article  Google Scholar 

  5. S. Y. Ding, J. Yi, J. F. Li, et al., “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis materials,” Nat. Rev. Mater. 1, 16021 (2016).

    Article  Google Scholar 

  6. Y. Jeong, Y.-M. Kook, K. Lee, and W.-G. Koh, “Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments,” Biosensors Bioelectron. 111, 102–116 (2018).

    Article  Google Scholar 

  7. E. Eremina, Yu. Eremin, and T. Wriedt, “Computational nano-optic technology based on discrete sources method (review),” J. Mod. Opt. 58 (5), 384 (2011).

    Article  MATH  Google Scholar 

  8. D. Xu, X. Xiong, L. Wu, et al., “Quantum plasmonics: New opportunity in fundamental and applied photonics. Review,” Adv. Opt. Photonics 10 (4), 703–756 (2018).

    Article  Google Scholar 

  9. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288 (2), 243 (1998).

    Article  Google Scholar 

  10. N. G. Khlebtsov and B. N. Khlebtsov, “Optimal design of gold nanomatryoshkas with embedded Raman reporters,” J. Quant. Spectrosc. Radiat. Transfer 190, 89 (2017).

    Article  Google Scholar 

  11. M. B. Gawande, A. Goswami, T. Asefa, et al., “Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis,” Chemic. Soc. Rev. 44, 7540 (2015).

    Article  Google Scholar 

  12. R. Frost, C. Wadell, A. Hellman, et al., “Core–shell nanoplasmonic sensing for characterization of biocorona formation and nanoparticle surface interactions,” ACS Sensors 1, 798 (2016).

    Article  Google Scholar 

  13. A. D. Phan, D. T. Nga, and N. A. Viet, “Theoretical model for plasmonic photothermal response of gold nanostructures solutions,” Opt. Commun. 410, 108 (2018).

    Article  Google Scholar 

  14. W. Zhang, M. Saliba, S. D. Stranks, et al., “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles,” Nano Lett. 13, 4505 (2013).

    Article  Google Scholar 

  15. L. Xu, F. Li, Y. Liu, F. Yao, and S. Liu, “Surface plasmon nanolaser: Principle, structure, characteristics, and applications,” Appl. Sci. 9, 861 (2019).

    Article  Google Scholar 

  16. M. Premaratne and M. Stockman, “Theory and technology of SPASERs: Review,” Adv. Opt. Photon. 9 (1), 79 (2017).

    Article  Google Scholar 

  17. V. I. Balykin, “Plasmonic nanolaser: Current state and prospects,” Phys. Usp. 61, 846–879 (2018).

    Article  Google Scholar 

  18. A. N. Sudarkin and P. A. Demkovich, “Excitation of surface electromagnetic wave on the boundary of a metal with an amplified medium,” Sov. Phys. Tech. Phys. 34, 764 (1988).

    Google Scholar 

  19. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90 (027402) (2003).

  20. M. A. Noginov, G. Zhu, A. M. Belgrave, et al., “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).

    Article  Google Scholar 

  21. M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, et al., “Roadmap on plasmonics,” J. Opt. 20 N043001 (2018).

  22. J.-W. Liaw, H.-C. Chen, and M.-K. Kuo, “Comparison of Au and Ag nanoshells' metal-enhanced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 146, 321–330 (2014).

    Article  Google Scholar 

  23. Q. Li, W. Zhang, D. Zhao, and M. Qiu, “Photothermal enhancement in core–shell structured plasmonic nanoparticles,” Plasmonics 9, 623 (2014).

    Article  Google Scholar 

  24. S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, “Nonlocal optical response in metallic nanostructures: Topical review,” J. Phys. Condens. Matter 27, N183204 (2015).

  25. M. Barbry, P. Koval, F. Marchesin, and R. Esteban, et al., “Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics,” Nano Lett. 15, 3410 (2015).

    Article  Google Scholar 

  26. C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C 115, 19470 (2011).

    Article  Google Scholar 

  27. C. Ciraci, J. B. Pendry, and D. R. Smith, “Hydrodynamic model for plasmonics: A macroscopic approach to a microscopic problem,” Chem. Phys. Chem. 14, 1109 (2013).

    Article  Google Scholar 

  28. A. Derkachova, K. Kolwas, and I. Demchenko, “Dielectric function for gold in plasmonics applications: Size dependence of plasmon resonance frequencies and damping rates for nanospheres,” Plasmonics 11, 941 (2016).

    Article  Google Scholar 

  29. N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized nonlocal optical response theory for plasmonic nanostructures,” Nature Commun. 5, 3809 (2014).

    Article  Google Scholar 

  30. Y. Huang and L. Gao, “Superscattering of light from core–shell nonlocal plasmonic nanoparticles,” J. Phys. Chem. C 118 (51), 30170 (2014).

    Article  Google Scholar 

  31. M. Wubs and N. A. Mortensen, “Nonlocal response in plasmonic nanostructures,” in Quantum Plasmonics, Ed. by S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal (Springer International, Cham, 2017), Vol. 185, p. 279.

    Google Scholar 

  32. M. Kahnert, “Numerical solutions of the macroscopic Maxwell equations for scattering by nonspherical particles: A tutorial review,” J. Quant. Spectrosc. Radiat. Transfer 178, 22 (2016).

    Article  Google Scholar 

  33. B. Gallinet, J. Butet, and O. J. F. Martin, “Numerical methods for nanophotonics: standard problems and future challenges (review),” Laser Photon. Rev. 9 (6), 577 (2015).

    Article  Google Scholar 

  34. M. A. Yurkin, “Computational approaches for plasmonics,” in Handbook of Molecular Plasmonics, Ed. by F. Della Sala and S. D’Agostino (Pan Stanford, 2013), Chapter 2, pp. 83–135.

    Google Scholar 

  35. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech, Boston, 2005).

    MATH  Google Scholar 

  36. J. M. Jin, The Finite Element Method in Electromagnetics, 3rd ed. (Wiley-IEEE, New York, 2014).

    MATH  Google Scholar 

  37. K. Busch, M. König, and J. Niegemann, “Discontinuous Galerkin methods in nanophotonics,” Laser Photon. Rev. 5 (6), 773 (2011).

    Article  Google Scholar 

  38. N. C. Nguyen, J. Peraire, and B. Cockburn, “Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations,” J. Comput. Phys. 230 (19), 7151 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  39. L. Li, S. Lanteri, and R. Perrussel, “A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time harmonic Maxwell’s equation,” J. Comput. Phys. 256 (1), 563 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  40. N. G. Khlebtsov, “T-matrix method in plasmonics: An overview,” J. Quant. Spectrosc. Radiat. Transfer 123, 184 (2013).

    Article  Google Scholar 

  41. Ch. Hafner, J. Smajic, and M. Agio, “Numerical methods for the electrodynamic analysis of nanostructures,” Nanoclusters and Nanostructured Surfaces, Ed. by A. K. Ray (Am. Sci. Publ., Valencia, California, US, 2010), pp. 207–274.

    Google Scholar 

  42. Yu. A. Eremin and A. G. Sveshnikov, “Mathematical models in nanooptics and biophotonics problems on the base of discrete sources method,” Comput. Math. Math. Phys. 47 (2), 262 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  43. Y. Q. Huang, J. C. Li, and W. Yang, “Theoretical and numerical analysis of a nonlocal dispersion model for light interaction with metallic nanostructures,” Comput. Math. Appl. 72, 921 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  44. N. Schmitt, C. Scheid, S. Lanteri, et al., “A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account nonlocal dispersion effects,” J. Comput. Phys. 316 (1), 396 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  45. L. Li, S. Lanteri, N. A. Mortensen, and M. Wubs, “A hybridizable discontinuous Galerkin method for solving nonlocal optical response models,” Comput. Phys. Commun. 219, 99 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  46. X. Zheng, M. Kupresak, R. Mittra, et al., “A boundary integral equation scheme for simulating the nonlocal hydrodynamic response of metallic antennas at deep-nanometer scales,” IEEE Trans. Antennas Propag. 66 (9), 4759 (2018).

    Article  Google Scholar 

  47. www.comsol.com

  48. Yu. A. Eremin, T. Wriedt, and W. Hergert, “Analysis of the scattering properties of 3D nonspherical plasmonic nanoparticles accounting for nonlocal effects,” J. Mod. Opt. 65, 1778 (2018).

    Article  Google Scholar 

  49. Yu. A. Eremin and A. G. Sveshnikov, “The concept of quasi-solution to diffraction problems,” Mat. Model. 6 (6), 76 (1994).

    MathSciNet  MATH  Google Scholar 

  50. Yu. A. Eremin, N. V. Orlov, and A. G. Sveshnikov, “Models of electromagnetic scattering problems based on discrete sources methods,” Generalized Multipole Techniques for Electromagnetic and Light Scattering, Ed. by T. Wriedt (Elsevier Science, Amsterdam, 1999), pp. 39–79.

    Google Scholar 

  51. Yu. A. Eremin and A. G. Sveshnikov, “Mathematical models in nanooptics and biophotonics based on the discrete sources method,” Comput. Math. Math. Phys. 47 (2), 262–279 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  52. A. Doicu, Yu. Eremin, and T. Wriedt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Academic, New York, 2000).

    MATH  Google Scholar 

  53. V. A. Trenogin, Functional Analysis (Nauka, Moscow, 1980) [in Russian].

    MATH  Google Scholar 

  54. Yu. A. Eremin, A. G. Sveshnikov, and S. P. Skobelev, “Null field method in wave diffraction problems,” Comput. Math. Math. Phys. 51 (8), 1391–1394 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  55. V. D. Kupradze, “On the approximate solution of problems in mathematical physics,” Russ. Math. Surv. 22 (2), 58–108 (1967).

    Article  MATH  Google Scholar 

  56. M. A. Aleksidze, Solution of Boundary Value Problems by Expansion in Nonorthogonal Functions (Nauka, Moscow, 1978) [in Russian]

    MATH  Google Scholar 

  57. R. S. Popovidi and Z. S. Tsverikmazashvili, “Numerical study of a diffraction problem by a modified method of nonorthogonal series,” USSR Comput. Math. Math. Phys. 17 (2) 93–103 (1977).

    Article  MathSciNet  Google Scholar 

  58. R. Zaridze, G. Bit-Babik, K. Tavzarashvili, et al., “The method of auxiliary sources (MAS): Solution of propagation, diffraction, and inverse problems using MAS,” Applied Computational Electromagnetics, Ed. by N. K. Uzunoglu, K. S. Nikita, and D. I. Kaklamani, NATO ASI Ser. (Springer, Berlin, 2000), Vol. 171, p. 33.

  59. Y. Okuno and K. Yasuura, “Numerical algorithm based on the mode-matching method with a singular-smoothing procedure for analyzing edge-type scattering problems,” IEEE Trans. Antennas Propag. 30 (4), 580 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  60. A. Matsushima, T. Matsuda, and Y. Okuno, “Introduction to Yasuura’s method of modal expansion with application to grating problems,” The Generalized Multipole Technique for Light Scattering, Ed. by T. Wriedt and Yu. Eremin (Springer, 2018), p. 169.

    Google Scholar 

  61. Y. Leviatan, “Analytic continuation considerations when using generalized formulations for scattering problems,” IEEE Trans. Antennas Propag. 38, 1259 (1990).

    Article  Google Scholar 

  62. N. L. Tsitsas, G. P. Zouros, G. Fikioris, and Y. Leviatan, “On methods employing auxiliary sources for two-dimensional electromagnetic scattering by noncircular shapes,” IEEE Trans. Antennas Propag. 66 (10), 5443 (2018).

    Article  Google Scholar 

  63. G. Fikioris and N. L. Tsitsas, “Convergent fields generalized by divergent currents in the method of auxiliary sources,” The Generalized Multipole Technique for Light Scattering, Ed. by T. Wriedt and Yu. Eremin (Springer, 2018), p. 93.

    Google Scholar 

  64. Yu. A. Eremin and A. G. Sveshnikov, “Discrete sources method in electromagnetic scattering,” Usp. Sovrem. Radioelektron., No. 10, 3–40 (2003).

  65. N. V. Grishina, Yu. A. Eremin, and A. G. Sveshnikov, “Analysis of scattering properties of nonaxiosymmetric substrate defects by the discrete-source method,” Opt. Spectrosc. 117 (6), 964–970 (2014).

    Article  Google Scholar 

  66. Ch. Hafner, Post-Modern Electromagnetics Using Intelligent Maxwell Solvers (Wiley, Chichester, 1999).

    Google Scholar 

  67. Ch. Hafner, J. Smajic, and M. Agio, “Numerical methods for the electrodynamic analysis of nanostructures,” Nanoclusters and Nanostructured Surfaces, Ed. by A. K. Ray (Am. Sci. Publ., Valencia, California, US, 2010), p. 207.

    Google Scholar 

  68. The Generalized Multipole Technique for Light Scattering, Ed. by T. Wriedt and Yu. Eremin (Springer, 2018).

    Google Scholar 

  69. Yu. A. Eremin and A. G. Sveshnikov, “Study of scattering by dielectric bodies based on the discrete source method,” Izv. Vyssh. Uch. Zaved. Radiofiz. 28 (5), 647 (1985).

    Google Scholar 

  70. N. V. Grishina, Yu. A. Eremin, and A. G. Sveshnikov, “Analysis of extraordinary scatters based on the discrete source method,” Vestn. Mosk. Gos. Univ., Ser. Fiz. Astron., No. 2, 18 (2003).

  71. Yu. A. Eremin, “Representation of fields in the discrete source method via sources in the complex plane,” Dokl. Akad. Nauk 270 (4), 864 (1983).

    Google Scholar 

  72. N. V. Grishina, Yu. A. Eremin, and A. G. Sveshnikov, “New concept of the discrete sources method in electromagnetic scattering problems,” Math. Models Comput. Simul. 8 (2), 175–182 (2016).

    Article  Google Scholar 

  73. E. Eremina, Yu. Eremin, and T. Wriedt, “Analysis of light scattering by erythrocytes based on discrete sources method,” Opt. Commun. 244, 15 (2005).

    Article  Google Scholar 

  74. E. Eremina, Yu. Eremin, and T. Wriedt, “Modeling of light scattering properties of a nanoshell on a plane interface: Influence of a core material and polarization,” J. Comput. Theor. Nanosci. 5 (11), 2186 (2008).

    Article  Google Scholar 

  75. E. Eremina, N. Grishina, Yu. Eremin, et al., “Total internal reflection microscopy with multilayered interface: Light scattering model based on discrete sources method,” J. Opt. A 8, 999 (2006).

    Article  Google Scholar 

  76. N. V. Grishina, Yu. A. Eremin, and A. G. Sveshnikov, “Extraordinary optical transmission through a conducting film with a nanometric inhomogeneity in the evanescent wave region,” Dokl. Math. 79 (1), 128–131 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  77. N. V. Grishina, Yu. A. Eremin, and A. G. Sveshnikov, “Analysis of scattering properties of embedded particles by applying the discrete sources method,” Comput. Math. Math. Phys. 52 (9), 1295–1303 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  78. V. I. Dmitriev and E. V. Zakharov, Integral Equation Method in Computational Electrodynamics (MAKS, Moscow, 2008) [in Russian].

    Google Scholar 

  79. Yu. A. Eremin, E. V. Zakharov, and N. I. Nesmeyanova, “The method of fundamental solutions in problems of diffraction of electromagnetic waves by bodies of revolution,” in Seven Papers in Applied Mathematics (Am. Math. Soc., Providence, R.I., 1985), American Mathematical Society Translations: Ser. 2, Vol. 125, p. 51.

  80. Yu. A. Eremin and A. G. Sveshnikov, “Quantum effects on optical properties of a pair of plasmonic particles separated by a subnanometer gap,” Comput. Math. Math. Phys. 59 (1), 112–120 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  81. Yu. A. Eremin and A. G. Sveshnikov, “Method for analyzing the influence of the quantum nonlocal effect on the characteristics of a plasmonic nanolaser,” Dokl. Math. 101 (1), 20–24 (2020).

    Article  Google Scholar 

  82. Yu. Eremin, A. Doicu, and T. Wriedt, “A numerical method for analyzing the near field enhancement of non-spherical dielectric-core metallic-shell particles accounting for the non-local dispersion,” J. Opt. Soc. Am. A 37 (7), 1135 (2020).

    Article  Google Scholar 

  83. R. Ruppin, “Optical properties of small metal spheres,” Phys. Rev. B 11, 2871 (1975).

    Article  Google Scholar 

  84. R. Ruppin, “Optical properties of a spatially dispersive cylinder,” J. Opt. Soc. Am. B 6, 1559 (1989).

    Article  Google Scholar 

  85. R. Ruppin, “Extinction properties of thin metallic nanowires,” Opt. Commun. 190, 205 (2001).

    Article  Google Scholar 

  86. Yu. Eremin, A. Doicu, and T. Wriedt, “Discrete sources method for modeling the nonlocal optical response of a nonspherical particle dimer,” J. Quant. Spectrosc. Radiat. Transfer 217, 35 (2018).

    Article  Google Scholar 

  87. C. Tserkezis, W. Yan, W. Hsieh, G. Sun, et al., “On the origin of nonlocal dumping in plasmonic monomers and dimmers,” Int. J. Mod. Phys. B 31, N17400005 (2017).

  88. A. Boardman and R. Ruppin, “The boundary conditions between two spatially dispersive media,” Surface Sci. 112, 153 (1981).

    Article  Google Scholar 

  89. P. Komar, M. Gosecka, M. Gadzinowski, et al., “Core–shell spheroidal microparticles with polystyrene cores and rich in polyglycidol shells,” Polymer 146, 6 (2018).

    Article  Google Scholar 

  90. P. Bhatia, S. S. Verma, and M. M. Sinha, “Tuning the optical properties of Fe–Au core–shell nanoparticles with spherical and spheroidal nanostructures,” Phys. Lett. A 383 (21), 2542 (2019).

    Article  Google Scholar 

  91. A. Evlyukin, K. V. Nerkararyan, and S. I. Bozhevolnyi, “Core–shell particles as efficient broadband absorbers in infrared optical range,” Opt. Express. 27, 17474 (2019).

    Article  Google Scholar 

  92. S. Rajkumar and M. Prabaharan, “Multi-functional core–shell Fe3O4Au nanoparticles for cancer diagnosis and therapy,” Colloids Surf. B: Biointerfaces 174, 252 (2019).

    Article  Google Scholar 

  93. Yu. A. Eremin and A. G. Sveshnikov, “Discrete source method for the study of influence nonlocality on characteristics of the plasmonic nanolaser resonators,” Comput. Math. Math. Phys. 59 (12), 2164 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  94. N. S. Bakhvalov, Numerical Methods: Analysis, Algebra, Ordinary Differential Equations (Nauka, Moscow, 1975; Mir, Moscow, 1977).

  95. V. A. Morozow, “Regularization methods for ill-posed problems,” SIAM Rev. 36 (3), 505–506 (1994).

    Article  Google Scholar 

  96. V. V. Voevodin and Yu. A. Kuznetsov, Matrices and Computations (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  97. D. Colton and R. Kress, Integral Equation Methods in Scattering Theory (Wiley, New York, 1984).

    MATH  Google Scholar 

  98. http://www.refractiveindex.info.

  99. I. Sidorenko, Sh. Nizamov, R. Hergenröder, et al., “Computer assisted detection and quantification of single adsorbing nanoparticles by differential surface plasmon microscopy,” Microchim Acta. 183, 101 (2015).

    Article  Google Scholar 

  100. D. Avşar, H. Ertürk, and M. P. Mengüç, “Plasmonic responses of metallic/dielectric core–shell nanoparticles on a dielectric substrate,” Mater. Res. Express. 6, N065006 (2019).

  101. Yu. A. Eremin, “Analysis of the influence of nonlocality on characteristics of the near field of a layered particle on a substrate,” Opt. Spectrosc. 128, 1500–1507 (2020).

    Article  Google Scholar 

  102. Yu. A. Eremin and A. G. Sveshnikov, “The influence of the asymmetry of the geometry of a core–shell particle on a substrate on the optical characteristics accounting for spatial dispersion,” Moscow Univ. Phys. Bull. 75 (5), 480–487 (2020).

    Article  Google Scholar 

  103. C. Jerez-Hanckes and J.-C. Nédélec, “Asymptotics for Helmholtz and Maxwell solutions in 3-D open waveguides,” Commun. Comput. Phys. 11 (2), 629 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  104. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, 1969).

    MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-01-00558) and by the Moscow Center for Fundamental and Applied Mathematics (project “Simulation of elements of plasmonic nanolaser with allowance for quantum nonlocality”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. A. Eremin or A. G. Sveshnikov.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremin, Y.A., Sveshnikov, A.G. Semi-Classical Models of Quantum Nanoplasmonics Based on the Discrete Source Method (Review). Comput. Math. and Math. Phys. 61, 564–590 (2021). https://doi.org/10.1134/S0965542521040047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542521040047

Keywords:

Navigation