Skip to main content
Log in

Computer assisted detection and quantification of single adsorbing nanoparticles by differential surface plasmon microscopy

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Sensitive detection of engineered nanoparticles (NPs) in air and in liquid samples is an important task and still a major challenge in analytical chemistry. Recent work demonstrated that it can be performed using surface plasmon microscopy (SPM) where binding of single NPs to a surface leads to the formation of characteristic patterns in differential SPM images. However, these patterns have to be discriminated from a noisy background. Computer-assisted recognition of nanoparticles offers a solution but requires the development of respective tools for data analysis. Hereby a numerical method for automated detection and characterization of images of single adsorbing NPs in SPM image sequences is presented. The detection accuracy of the method was validated using computer generated images and manual counting. The method was applied for detecting and imaging of gold and silver NPs adsorbing from aqueous dispersions and for soot and NaCl NPs adsorbing from aerosols. The determined adsorption rate was in range 0.1–40 NPs per (s mm2) and linearly dependent on the concentration of nanoparticles. Depending on the type of NPs and signal to noise ratio, a probability of recognition of 90–95 % can be achieved.

A computer-assisted method is presented for the detection and characterization of images of single adsorbing nanoparticles in surface plasmon microscopy images. The method was validated and can be applied to detecting and imaging of nanoparticles absorbed from aqueous dispersions and aerosols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hasselov M, Readman JW, Ranville JF, Tiede K (2008) Nanoparticles analysis and characterization methodologies in environmental risk assessment of engineered nanopaticles. Ecotoxicology 17:344–361

    Article  Google Scholar 

  2. Zybin A, Kuritsyn YA, Gurevich EL, Temchura VV, Überla K, Niemax K (2010) Real-time detection of single immobilized nanoparticles by surface plasmon resonance imaging. Plasmonics 5:31. doi:10.1007/s11468-009-9111-5

    Article  CAS  Google Scholar 

  3. Gurevich EL, Temchura VV, Überla K, Zybin A (2011) Analytical features of particle counting sensor based on plasmon assisted microscopy of nano objects. Sensors Actuators B Chem 160:1210–1215. doi:10.1016/j.snb.2011.09.050

    Article  CAS  Google Scholar 

  4. Halpern AR, Wood JB, Wang Y, Corn RM (2014) Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of DNA hybridization adsorption. ACS Nano 8(1):1022–1030. doi:10.1021/nn405868e

    Article  CAS  Google Scholar 

  5. Yu H, Shan X, Wang S, Chen H, Tao N (2014) Plasmonic imaging and detection of single DNA molecules. ACS Nano 8(4):3427–3433. doi:10.1021/nn4062885

    Article  CAS  Google Scholar 

  6. Wang S, Shang X, Patel U, Huang X, Lu J, Li J, Tao N (2010) Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. PNAS 107(37):16028–16032. doi:10.1073/pnas.1005264107

    Article  CAS  Google Scholar 

  7. Fang Y, Wang W, Wo X, Luo Y, Yin S, Wang Y, Shan X, Tao N (2014) Plasmonic imaging of electrochemical oxidation of single nanoparticles. J Am Chem Soc 136:12564–12587. doi:10.1021/ja507097y

    Article  Google Scholar 

  8. Shan X, Díez-Pérez I, Wang L, Wiktor P, Gu Y, Zhang L, Wang W, Lu J, Wang S, Gong Q, Li J, Tao N (2012) Imaging the electrocatalytic activity of single nanoparticles. Nat Nanotechnol 7:668–672. doi:10.1038/nnano.2012.134

    Article  CAS  Google Scholar 

  9. Rothenhauesler B, Knoll W (1988) Surface plasmon microscopy. Nature 332:615–617. doi:10.1038/332615a0

    Article  Google Scholar 

  10. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493. doi:10.1021/cr068107d

    Article  CAS  Google Scholar 

  11. Brockman JM, Nelson BP, Corn RM (2000) Surface plasmon resonance imaging measurements of ultrathin organic films. Annu Rev Phys Chem 51:41–63. doi:10.1146/annurev.physchem.51.1.41

    Article  CAS  Google Scholar 

  12. Somekh MG, Liu S, Velinov TS, See CW (2000) High-resolution scanning surface-plasmon microscopy. Appl Opt 39:6279–6287. doi:10.1364/AO.39.006279

    Article  CAS  Google Scholar 

  13. Huang B, Yu F, Zare RN (2007) Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal Chem 79:2979–2983. doi:10.1021/ac062284x

    Article  CAS  Google Scholar 

  14. Weichert F, Gaspar M, Timm C, Zybin A, Gurevich EL, Engel M, Müller H, Marwedel P (2010) Signal analysis and classification for surface plasmon assisted microscopy of nanoobjects. Sensors Actuators B Chem 151:281–290. doi:10.1016/j.snb.2010.08.005

    Article  CAS  Google Scholar 

  15. Zybin A, Boecker D, Mirsky VM, Niemax K (2007) Enhancement of the detection power of surface plasmon resonance measurements by optimization of the reflection angle. Anal Chem 79:4233–4236. doi:10.1021/ac070074u

    Article  CAS  Google Scholar 

  16. Scheibel HG, Postendörfer J (1983) Generation of monodisperse Ag- and NaCl-aerosols with particle diameters between 2 and 300 nm. J Aerosol Sci 14:113–126

    Article  CAS  Google Scholar 

  17. Jain R, Kasturi R, Schunck BG (1995) Machine vision. McGraw-Hill. ISBN 0-07-032018-7

  18. Young IT, van Vliet LJ (1995) Recursive implementation of the Gaussian filter. Signal Proc 44:139–151. doi:10.1016/0165-1684(95)00020-E

    Article  Google Scholar 

  19. Lindeberg T (1998) Feature detection with automatic scale selection. Int J Comput Vis 30:7–116. doi:10.1023/A:1008045108935

    Google Scholar 

  20. Räth C, Morfill G (1997) Texture detection and texture discrimination with anisotropic scaling indices. J Opt Soc Am A 14(12):3208–3215. doi:10.1364/JOSAA.14.003208

    Article  Google Scholar 

  21. Welch BL (1947) The generalization of “Student’s” problem when several different population variances are involved. Biometrica 34:28–35. doi:10.2307/2332510

    CAS  Google Scholar 

  22. Mat-Isa NA, Mashor MY, Othman NH (2005) Seeded region growing features extraction algorithm. IJSIM 13:61–70

    Google Scholar 

  23. Demetriadou A, Kornyshev AA (2015) Principles of nanoparticle imaging using surface plasmons. New J Phys 17:013041. doi:10.1088/1367-2630/17/1/013041

    Article  CAS  Google Scholar 

  24. Boecker D, Zybin A, Niemax K, Grunwald C, Mirsky VM (2008) Noise reduction by multiple referencing in surface plasmon resonance imaging. Rev Sci Instrum 79:023110

    Article  Google Scholar 

  25. Nizamov S, Scherbahn V , Mirsky VM (2015) Self-referencing SPR-sensor based on integral measurements of light intensity reflected by arbitrarily distributed sensing and referencing spots. Sensors Actuators B Chem 207:740–747. doi:10.1016/j.snb.2014.10.022

  26. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170. doi:10.1021/cr0300789

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by FP7 EC Project “Nanodetector” (FP7-NMP-2011-SME-5, #280478). The authors are grateful to the partners of the Project “Nanodetector” for fruitful collaboration during the development and assembly of the experimental device. We acknowledge K. Tonder, F. Klemm, V. Scherbahn and M. Michling for assistance in the experimental measurements and manual verification of the numerical particle detection as well as an assistance of students of BTU Cottbus—Senftenberg in the manual validation of the counting software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir M. Mirsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorenko, I., Nizamov, S., Hergenröder, R. et al. Computer assisted detection and quantification of single adsorbing nanoparticles by differential surface plasmon microscopy. Microchim Acta 183, 101–109 (2016). https://doi.org/10.1007/s00604-015-1599-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1599-0

Keywords

Navigation