Skip to main content
Log in

Asymptotic Solution of Coefficient Inverse Problems for Burgers-Type Equations

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

For a singularly perturbed reaction–diffusion–advection equation, called in applications a Burgers-type equation and having a time-periodic solution with an internal transition layer, asymptotic analysis is used to solve some inverse problems of reconstructing model parameters (determining the linear amplification factor and boundary conditions) from known information about the observed solution of the direct problem in a given time interval (period). Numerical experiments demonstrating the efficiency of the approach proposed are conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. N. Nefedov, “Comparison principle for reaction–diffusion–advection problems with boundary and internal layers,” Lect. Notes Comput. Sci. 8236, 62–72 (2013).

    Article  MathSciNet  Google Scholar 

  2. J. M. Burgers, “A mathematical model illustrating the theory of turbulence,” Adv. Appl. Mech. 1, 171–199 (1948).

    Article  MathSciNet  Google Scholar 

  3. A. Parker, “On the periodic solution of the Burgers equation: A unified approach,” Proc. R. Soc. London Ser. A 438, 113–132 (1992).

    Article  MathSciNet  Google Scholar 

  4. J. D. Cole, “On a quasilinear parabolic equation occurring in aerodynamics,” Q. Appl. Math. 9, 225–236 (1951).

    Article  Google Scholar 

  5. W. Malfliet, “Approximate solution of the damped Burgers equation,” J. Phys. A: Math. Gen. 26, 723–728 (1993).

    Article  Google Scholar 

  6. E. S. Fahmy, K. R. Raslan, and H. A. Abdusalam, “On the exact and numerical solution of the time-delayed Burgers equation,” Int. J. Comput. Math. 85 (11), 1637–1648 (2008).

    Article  MathSciNet  Google Scholar 

  7. O. V. Rudenko, S. N. Gurbatov, and C. M. Hedberg, Nonlinear Acoustics through Problems and Examples (Trafford, Victoria, BC, Canada, 2011).

  8. O. V. Rudenko, “Equation admitting linearization and describing waves in dissipative media with modular, quadratic, and quadratically cubic nonlinearities,” Dokl. Math. 94 (3), 703–707 (2016).

    Article  MathSciNet  Google Scholar 

  9. O. V. Rudenko, “Modular solitons,” Dokl. Math. 94 (3), 708–711 (2016).

    Article  MathSciNet  Google Scholar 

  10. N. N. Nefedov and O. V. Rudenko, “On front motion in a Burgers-type equation with quadratic and modular nonlinearity and nonlinear amplification,” Dokl. Math. 97 (1), 99–103 (2018).

    Article  MathSciNet  Google Scholar 

  11. N. Nefedov, L. Recke, and K. Schneider, “Existence and asymptotic stability of periodic solutions with an interior layer of reaction–advection–diffusion equations,” J. Math. Anal. Appl. 405 (1), 90–103 (2013).

    Article  MathSciNet  Google Scholar 

  12. E. A. Antipov, V. T. Volkov, N. T. Levashova, and N. N. Nefedov, “A solution of moving front type for a two-dimensional reaction-diffusion problem,” Model. Anal. Inf. Syst. 24 (3), 259–279 (2017).

    Article  MathSciNet  Google Scholar 

  13. D. Lukyanenko, N. Nefedov, E. Nikulin, and V. Volkov, “Use of asymptotics for new dynamic adapted mesh construction for periodic solutions with an interior layer of reaction–diffusion–advection equations,” Lect. Notes Comput. Sci. 10187, 107–118 (2017).

    Article  MathSciNet  Google Scholar 

  14. E. A. Antipov, N. T. Levashova, and N. N. Nefedov, “Asymptotics of the front motion in the reaction–diffusion–advection problem,” Comput. Math. Math. Phys. 54 (10), 1536–1549 (2014).

    Article  MathSciNet  Google Scholar 

  15. V. Volkov, D. Lukyanenko, and N. Nefedov, “Asymptotic-numerical method for the location and dynamics of internal layers in singular perturbed parabolic problems,” Lect. Notes Comput. Sci. 10187, 721–729 (2017).

    Article  MathSciNet  Google Scholar 

  16. S. I. Kabanikhin, “Definitions and examples of inverse and ill-posed problems,” J. Inverse Ill-Posed Probl. 16 (4), 317–357 (2008).

    MathSciNet  MATH  Google Scholar 

  17. M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC method),” Inverse Probl. 12 (5), 1–45 (1997).

    Article  MathSciNet  Google Scholar 

  18. L. Beilina and M. V. Klibanov, “A globally convergent numerical method for a coefficient inverse problem,” SIAM J. Sci. Comput. 31 (1), 478–509 (2008).

    Article  MathSciNet  Google Scholar 

  19. S. I. Kabanikhin, K. K. Sabelfeld, N. S. Novikov, and M. A. Shishlenin, “Numerical solution of an inverse problem of coefficient recovering for a wave equation by a stochastic projection methods,” Monte Carlo Methods Appl. 21 (3), 189–203 (2015).

    Article  MathSciNet  Google Scholar 

  20. D. Lukyanenko, M. Shishlenin, and V. Volkov, “Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction–diffusion–advection equation with the final time data,” Commun. Nonlinear Sci. Numer. Simul. 54, 233–247 (2018).

    Article  MathSciNet  Google Scholar 

  21. V. T. Volkov, D. V. Lukyanenko, and N. N. Nefedov, “Analytical-numerical approach to describing time-periodic motion of fronts in singularly perturbed reaction–advection–diffusion models,” Comput. Math. Math. Phys. 59 (1), 46–58 (2019).

    Article  MathSciNet  Google Scholar 

  22. D. V. Lukyanenko, V. T. Volkov, and N. N. Nefedov, “Dynamically adapted mesh construction for the efficient numerical solution of a singular perturbed reaction–diffusion–advection equation,” Model. Anal. Inf. Syst. 24 (3), 322–338 (2017).

    Article  MathSciNet  Google Scholar 

  23. D. Lukyanenko, N. Nefedov, E. Nikulin, and V. T. Volkov, “Use of asymptotics for new dynamic adapted mesh construction for periodic solutions with an interior layer of reaction–diffusion–advection equations,” Lect. Notes Comput. Sci. 10187, 107–118 (2017).

    Article  MathSciNet  Google Scholar 

  24. D. V. Lukyanenko, V. B. Grigorev, V. T. Volkov, and M. A. Shishlenin, “Solving of the coefficient inverse problem for a nonlinear singularly perturbed two-dimensional reaction–diffusion equation with the location of moving front data,” Comput. Math. Appl. 77 (5), 1245–1254 (2019).

    Article  MathSciNet  Google Scholar 

  25. D. V. Lukyanenko, V. T. Volkov, N. N. Nefedov, and A. G. Yagola, “Application of asymptotic analysis for solving the inverse problem of determining the coefficient of linear amplification in Burgers’ equations,” Moscow Univ. Phys. Bull. 74, 131–136 (2019).

    Article  Google Scholar 

  26. D. V. Lukyanenko, M. A. Shishlenin, and V. T. Volkov, “Asymptotic analysis of solving an inverse boundary value problem for a nonlinear singularly perturbed time-periodic reaction–diffusion–advection equation,” J. Inverse Ill-Posed Probl. 27 (5), 745–758 (2019).

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.G. Yagola and D.V. Luk’yanenko for discussing this work, which contributed to its improvement. In addition, we thank D.V. Luk’yanenko for conducting experiments illustrating the efficiency of the approach developed.

Funding

This work was supported by the Russian Science Foundation, grant no. 18-11-00042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Nefedov.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, V.T., Nefedov, N.N. Asymptotic Solution of Coefficient Inverse Problems for Burgers-Type Equations. Comput. Math. and Math. Phys. 60, 950–959 (2020). https://doi.org/10.1134/S0965542520060123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520060123

Keywords:

Navigation