Skip to main content
Log in

Application of the Nesvetay Code for Solving Three-Dimensional High-Altitude Aerodynamics Problems

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A survey of the capabilities of the Nesvetay code as applied to computing the flow of a high-speed monatomic gas around objects of irregular shape for large flight altitudes is given. An implicit numerical method on an arbitrary unstructured grid and a two-level approach to the organization of parallel computations are described. This code is compared with the well-known MONACO and SMILE codes that implement the direct simulation Monte Carlo method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. K. Godunov, “A difference method for the numerical calculation of discontinuous solutions to fluid dynamics equations,” Mat. Sb. 47 (89), 271–306 (1957).

    Google Scholar 

  2. V. I. Kolobov, R. R. Arslanbekov, V. V. Aristov, A. A. Frolova, and S. A. Zabelok, “Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement,” J. Comput. Phys. 223, 589–608 (2007).

    Article  Google Scholar 

  3. Yu. A. Anikin, Yu. Yu. Kloss, D. V. Martynov, and F. G. Cheremisin, “Computer simulation and analysis of the Knudsen experiment of 1910,” Nano Mikrosist. Tekhn., No. 8, 6–14 (2010).

  4. R. R. Arslanbekov, V. I. Kolobov, and A. A. Frolova, “Kinetic solvers with adaptive mesh in phase space,” Phys. Rev. E 88, 063301 (2013).

    Article  Google Scholar 

  5. C. Baranger, J. Claudel, N. Herouard, and L. Mieussens, “Locally refined discrete velocity grids for stationary rarefied flow simulations,” J. Comput. Phys. 257, 572–593 (2014).

    Article  MathSciNet  Google Scholar 

  6. G. Dimarco, R. Loubere, and J. Narski, “Towards an ultra efficient kinetic scheme. Part III: High-performance computing,” J. Comput. Phys. 284, 22–39 (2015).

    Article  MathSciNet  Google Scholar 

  7. P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,” Phys. Rev. 94, 511–525 (1954).

    Article  Google Scholar 

  8. E. M. Shakhov, “On a generalization of the relaxation kinetic Krook equation, Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidkosti Gaza, No. 5, 142–145 (1968).

    Google Scholar 

  9. V. A. Rykov, “Model kinetic equation for the gas with rotational degrees of freedom,”, Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidkosti Gaza, No. 6, 107–115 (1975).

    Google Scholar 

  10. V. A. Titarev, “Software package Nesvetay-3D for simulating three-dimensional flows of monoatomic rarefied gas,” Certificate of State Registration of computer programs 20176616295, 2017.

  11. V. A. Titarev, “Implicit numerical method for computing three-dimensional rarefied gas flows on unstructured meshes,” Comput. Math. Math. Phys. 50, 1719–1733 (2010).

    Article  MathSciNet  Google Scholar 

  12. V. A. Titarev, M. Dumbser, and S. V. Utyuzhnikov, “Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions,” J. Comput. Phys. 256, 17–33 (2014).

    Article  MathSciNet  Google Scholar 

  13. V. A. Titarev, “Software package Nesvetay-3D for simulating 3D flows of rarefied monatomic gas,” Nauka Obraz., No. 6, 124–154 (2014).

  14. V. A. Titarev, “Numerical modeling of high-speed rarefied gas flows over blunt bodies using model kinetic equations,” Europ. J. Mech. B Fluids, Special Issue on Non-equilibrium Gas Flows 64, 112–117 (2017).

    MathSciNet  MATH  Google Scholar 

  15. V. A. Titarev, “Application of model kinetic equations to hypersonic rarefied gas flows,” Comput. Fluids, Special issue “Nonlinear flow and transport,” 169, 62–70 (2018).

  16. V. P. Kolgan, “Application of the minimum derivative principle for constructing finite difference schemes for the calculation of discontinuous solutions in fluid dynamics,” Uchen. Zapiski TsAGI 3 (6), 68–77 (1972).

    Google Scholar 

  17. V. P. Kolgan, “Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics,” J. Comput. Phys. 230, 2384–2390 (2011).

    Article  MathSciNet  Google Scholar 

  18. B. Van Leer, “Towards the ultimate conservative difference scheme V: A second-order sequel to Godunov’s method,” J. Comput. Phys. 32, 101–136 (1979).

    Article  Google Scholar 

  19. M. Dumbser and M. Käser, “Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems,” J. Comput. Phys. 221, 693–723 (2007).

    Article  MathSciNet  Google Scholar 

  20. M. Dumbser, M. Käser, V. A. Titarev, and E. F. Toro, “Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems,” J. Comput. Phys. 226, 204–243 (2007).

    Article  MathSciNet  Google Scholar 

  21. T. J. Barth and P. O. Frederickson, “Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction,” AIAA paper no. 90-0013, 28th Aerospace Sciences Meeting, 1990.

  22. V. V. Rusanov, “Computation of nonstationary shock waves with obstacles,” Zh. Vychisl. Mat. Mat. Fiz. 1 (2), 267–279 (1961).

    Google Scholar 

  23. V. A. Titarev, “Conservative numerical methods for model kinetic equations,” Comput. Fluids 36, 1446–1459 (2007).

    Article  MathSciNet  Google Scholar 

  24. L. Mieussens, “Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries,” J. Comput. Phys. 162, 429–466 (2000).

    Article  MathSciNet  Google Scholar 

  25. A. V. Gusarov and I. Smurov, “Gas-dynamic boundary conditions of evaporation and condensation: numerical analysis of the Knudsen layer,” Phys. Fluids 14, 4242–4255 (2002).

    Article  MathSciNet  Google Scholar 

  26. V. A. Titarev, “Numerical method for computing two-dimensional unsteady rarefied gas flows in arbitrarily shaped domains,” Comput. Math. Math. Phys. 49, 1197–1211 (2009).

    Article  MathSciNet  Google Scholar 

  27. S. Yoon and A. Jameson, “Lower-upper symmetric Gauss–Seidel method for the Euler and Navier–Stokes equations,” AIAA J. 26, 1025–1026 (1988).

    Article  Google Scholar 

  28. I. Men’shov and Y. Nakamura, “An implicit advection upwind splitting scheme for hypersonic air flows in thermochemical nonequilibrium,” Collection of technical papers of 6th Int. Symp. on CFD, Lake Tahoe, Nevada, 1995, pp. 815–821.

  29. M. N. Petrov, A. A. Tambova, V. A. Titarev, S. V. Utyuzhnikov, and A. V. Chikitkin, “FlowModellium software package for calculating high-speed flows of compressible fluid,” Comput. Math. Math. Phys. 58, 1865–1886 (2018).

    Article  MathSciNet  Google Scholar 

  30. A. Chikitkin, M. Petrov, V. Titarev, and S. Utyuzhnikov, “Parallel versions of implicit LU-SGS method,” Special Iss. Lobachevskii J. Math. on Parallel Structure of Algorithms 39, 503–512 (2018).

    Article  Google Scholar 

  31. I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben’, and T. K. Kozubskaya, “Parallel software package NOISETTE for large-scale computations of aerodynamical and aeroacoustics problems,” Vych. Met. Program. 23 (3), 110–125 (2012).

    Google Scholar 

  32. A. V. Gorobets, “Parallel algorithm of the NOISEtte code for CFD and CAA simulations,” Lobachevskii J. Math. 39, 524–532 (2018).

    Article  MathSciNet  Google Scholar 

  33. V. V. Aristov and S. A. Zabelok, “A deterministic method for solving the Boltzmann equation with parallel computations,” Comput. Math. Math. Phys. 42, 406–418 (2002).

    MathSciNet  MATH  Google Scholar 

  34. V. A. Titarev, Numerical simulation of 3D flows of rarefied gas using a supercomputer, Doctoral Dissertation in Mathematics and Physics (Federal Research Center “Computer Science and Control,” Russian Academy of Sciences Moscow, 2018).

  35. A. Semin, E. Druzhinin, V. Mironov, A. Shmelev, and A. Moskovsky, “The Performance characterization of the RSC PetaStream module,” 29th Int. Conf., ISC 2014, Leipzig, Lect. Notes Comput. Sci. 8488, 420–429, (2014).

  36. A. J. Lofthouse, “Nonequilibrium hypersonic aerothermodynamics using the direct simulation Monte Carlo and Navier–Stokes models, Ph.D. Thesis (The University of Michigan, 2008).

  37. S. Dietrich and I. D. Boyd, “Scalar and parallel optimized implementation of the direct simulation Monte Carlo method,” J. Comput. Phys. 126, 328–342 (1996).

    Article  Google Scholar 

  38. A. A. Frolova and V. A. Titarev, “Recent progress on supercomputer modelling of high-speed rarefied gas flows using kinetic equations,” Supercomput. Frontiers Innov. 5 (3), 117–121 (2018).

    Google Scholar 

  39. A. A. Frolova and V. A. Titarev, “Kinetic methods for solving nonstationary problems with streaming flows,” Mat. Mat. Model., No. 4, 27–44 (2018).

  40. V. A. Titarev and A. A. Frolova, “Application of model kinetic equations to calculations of super- and hypersonic molecular gas flows,” Fluid Dyn. 53, 536–551 (2018).

    Article  Google Scholar 

  41. A. V. Kashkovsky, Ye. A. Bondar, G. A. Zhukova, M. S. Ivanov, and S. F. Gimelshein, “Object-oriented software design of real gas effects for the DSMC method,” 24th International Symposium on Rarefied Gas Dynamics, AIP Conf. Proc. 762, 583–588 (2004).

  42. M. S. Ivanov, A. V. Kashkovsky, S. F. Gimelshein, G. N. Markelov, A. A. Alexeenko, Ye. A. Bondar, G. A. Zhukova, S. B. Nikiforov, and P. V. Vashenkov, “SMILE System for 2D/3D DSMC computations,” Proc. of 25th Int. Symp. on RGD (Publishing House of the Siberian Branch of the Russian Academy of Sciences, 2007) pp. 539–544.

  43. M. Ivanov, A. Kashkovsky, P. Vashchenkov, and Y. Bondar, “Parallel object-oriented software system for DSMC modeling of high-altitude aerothermodynamic problems,” 27th Int. Symp. on Rarefied Gas Dynamics, AIP Conf. Proc. 1333, 211–218 (2010).

  44. G. V. Shoev, Ye. A. Bondar, G. P. Oblapenko, and E. V. Kustova, “Development and testing of a numerical simulation method for thermally nonequilibrium dissociating flows in ANSYS Fluen,” Thermophys. Aeromech. 23, 151–164 (2016).

    Article  Google Scholar 

  45. A. A. Shevyrin, Ye. A. Bondar, S. T. Kalashnikov, V. I. Khlybov, and V. G. Degtyar’, “Direct simulation of rarefied high-enthalpy flow around the RAM C-II capsule,” High Temp. 54, 383–389 (2016).

    Article  Google Scholar 

  46. A. Molchanova, A. Kashkovsky, and Ye. Bondar, “Surface recombination in the direct simulation Monte Carlo method,” Phys. Fluids 30, 107105 (2018).

    Article  Google Scholar 

  47. V. A. Titarev, A. A. Frolova, V. A. Rykov, P. V. Vashchenkov, A. A. Shevyrin, and Ye. A. Bondar, “Comparison of the Shakhov kinetic equation and DSMC method as applied to space vehicle aerothermodynamics,” J. Comput. Appl. Math. 364, 1–12 (2020).

    Article  MathSciNet  Google Scholar 

  48. Vl. Voevodin, A. Antonov, D. Nikitenko, P. Shvets, S. Sobolev, I. Sidorov, K. Stefanov, Vad. Voevodin, and S. Zhumatiy, “Supercomputer Lomonosov-2: Large scale, deep monitoring and fine analytics for the user community,” Supercomput. Frontiers Innov. 6 (2), 4–11 (2019).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to my colleagues E.M. Shakhov and A.A. Frolova for useful discussions and to Ye.A. Bondar, P.V. Vashchenkov, and A.A. Shevyrin (Khristianovich Institute of Theoretical and Applied Mechanics, Siberian branch of the Russian Academy of Sciences) for the computation results obtained using the package SMILE. The work was performed using the resources of the supercomputer center of the Lomonosov Moscow State University [48], the Joint Supercomputer Center (JSCC) of the Russian Academy of Sciences, the supercomputer center “Polytechnic” of the Peter the Great St. Petersburg Polytechnic University, and Moscow Institute of Physics and Technology.

Funding

This work was supported by the Russian Foundation for Basic Research, project nos. 18-08-00501 and 18-07-01500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Titarev.

Additional information

Dedicated to Academician S.K. Godunov on the occasion of his 90th birthday

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titarev, V.A. Application of the Nesvetay Code for Solving Three-Dimensional High-Altitude Aerodynamics Problems. Comput. Math. and Math. Phys. 60, 737–748 (2020). https://doi.org/10.1134/S0965542520040168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520040168

Keywords:

Navigation