Skip to main content
Log in

Propagation of Electromagnetic Waves in an Open Planar Dielectric Waveguide Filled with a Nonlinear Medium II: TM Waves

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A nonlinear eigenvalue problem on an interval is considered. The nonlinearity in the equation is specified by a nonnegative monotonically increasing function, and the boundary conditions nonlinearly depend both on the sought-for functions and on the spectral parameter. The discrete eigenvalues are defined using an additional (local) condition at one end of the interval. This problem describes the propagation of monochromatic (polarized) electromagnetic TM waves in a planar dielectric waveguide filled with a nonlinear medium. The nonlinearity covers a wide range of laws of nonlinear optics corresponding to self-interaction effects. Results on the solvability of the problem and the properties of the eigenvalues are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth-Heinemann, Oxford, 1984).

  2. I. R. Shen, Principles of Nonlinear Optics (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  3. N. N. Akhmediev and A. Ankevich, Solitons: Nonlinear Pulses and Beams (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  4. E. A. Manykin, Interaction of Radiation with Matter: Phenomenology of Nonlinear Optics (Mosk. Inzh.-Fiz. Inst., Moscow, 1996) [in Russian].

    Google Scholar 

  5. A. D. Boardman, P. Egan, F. Lederer, U. Langbein, and D. Mihalache, Third-Order Nonlinear Electromagnetic TE and TM Guided Waves (Elsevier Science, New York, 1991).

    Book  Google Scholar 

  6. D. Mihalache, R. G. Nazmitdinov, and V. K. Fedyanin, “Nonlinear optical waves in layered structures,” Phys. Elem. Part. At. Nucl. 20 (1), 198 (1989).

    Google Scholar 

  7. D. Mihalache, R. G. Nazmitdinov, V. K. Fedyanin, and R. P. Wang, “Nonlinear guided waves in planar structures,” Phys. Elem. Part. At. Nucl. 23 (1), 122 (1992).

    Google Scholar 

  8. Yu. G. Smirnov and D. V. Valovik, “Guided electromagnetic waves propagating in a plane dielectric waveguide with nonlinear permittivity,” Phys. Rev. A 91 (1), 013840 (2015).

    Article  MathSciNet  Google Scholar 

  9. D. V. Valovik, “Novel propagation regimes for TE waves guided by a waveguide filled with Kerr medium,” J. Nonlinear Opt. Phys. Mater. 25 (4), 1650051 (2016).

    Article  Google Scholar 

  10. D. V. Valovik, “On the existence of infinitely many nonperturbative solutions in a transmission eigenvalue problem for nonlinear Helmholtz equation with polynomial nonlinearity,” Appl. Math. Model. 53, 296 (2018).

    Article  MathSciNet  Google Scholar 

  11. D. V. Valovik and V. Yu. Kurseeva, “On the eigenvalues of a nonlinear spectral problem,” Differ. Equations 52 (2), 149 (2016).

    Article  MathSciNet  Google Scholar 

  12. S. J. Al-Bader and H. A. Jamid, “Nonlinear waves in saturable self-focusing thin films bounded by linear media,” IEEE J. Quantum Electron. 24 (10), 2052 (1988).

    Article  Google Scholar 

  13. D. V. Valovik, “Propagation of electromagnetic waves in an open planar dielectric waveguide filled with a nonlinear medium I: TE Waves,” Comput. Math. Math. Phys. 59 (6), 958–977 (2019).

    Article  MathSciNet  Google Scholar 

  14. D. V. Valovik, “On the problem of nonlinear coupled electromagnetic TE–TM wave propagation,” J. Math. Phys. 54 (4), 042902 (2013).

    Article  MathSciNet  Google Scholar 

  15. Yu. G. Smirnov and D. V. Valovik, “Problem of nonlinear coupled electromagnetic TE–TE wave propagation,” J. Math. Phys. 54 (8), 083502 (2013).

    Article  MathSciNet  Google Scholar 

  16. D. V. Valovik, “On spectral properties of the Sturm–Liouville operator with power nonlinearity,” Monats. Math. 188 (2), 369 (2019).

    Article  MathSciNet  Google Scholar 

  17. P. N. Eleonskii, L. G. Oganes’yants, and V. P. Silin, “Cylindrical nonlinear waveguides,” Sov. Phys. JETP 35 (1), 44 (1972).

    Google Scholar 

  18. D. Mihalache and V. K. Fedyanin, “P-polarized nonlinear surface and connected waves in layered structures,” Teor. Mat. Fiz. 54 (3), 443 (1983).

    Google Scholar 

  19. Yu. G. Smirnov and D. V. Valovik, “On the infinitely many nonperturbative solutions in a transmission eigenvalue problem for Maxwell’s equations with cubic nonlinearity,” J. Math. Phys. 57 (10), 103504 (2016).

    Article  MathSciNet  Google Scholar 

  20. D. V. Valovik and S. V. Tikhov, “On the existence of an infinite number of eigenvalues in one nonlinear problem of waveguide theory,” Comput. Math. Math. Phys. 58 (10), 1600–1609 (2018).

    Article  MathSciNet  Google Scholar 

  21. D. V. Valovik, “Propagation of TM waves in a layer with arbitrary nonlinearity,” Comput. Math. Math. Phys. 51 (9), 1622–1632 (2011).

    Article  MathSciNet  Google Scholar 

  22. D. V. Valovik and S. V. Tikhov, “Asymptotic analysis of a nonlinear eigenvalue problem arising in the waveguide theory,” Differ. Equations 55 (12), 1554–1569 (2019).

    Article  Google Scholar 

  23. K. A. Yuskaeva, PhD Thesis (Universität Osnabrück, Universität Osnabrück Fachbereich Physik, 2012).

  24. L. A. Vainshtein, Electromagnetic Waves (Radio i Svyaz’, Moscow, 1988) [in Russian].

    Google Scholar 

  25. M. J. Adams, An Introduction to Optical Waveguides (Wiley, Chichester, 1981).

    Google Scholar 

  26. I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space (Nauka, Moscow, 1965; Am. Math. Soc., Providence, R.I., 1969).

  27. M. M. Vainberg, Variational Methods for Analysis of Nonlinear Operators (Gostekhteorizdat, Moscow, 1956) [in Russian].

    MATH  Google Scholar 

  28. A. Ambrosetti and P. H. Rabinowitz, “Dual variational methods in critical point theory and applications,” J. Funct. Anal. 14 (4), 349 (1973).

    Article  MathSciNet  Google Scholar 

  29. M. A. Krasnosel’skii, Topological Methods in the Theory of Nonlinear Integral Equations (Gostekhteorizdat, Moscow, 1956; Pergamon, New York, 1964).

  30. V. G. Osmolovskii, Nonlinear Sturm–Liouville Problem (S.-Peterburg. Univ., St. Petersburg, 2003).

    Google Scholar 

  31. A. M. Goncharenko and V. A. Karpenko, Foundations of the Theory of Optical Waveguides (Nauka i Tekhnika, Minsk, 1983) [in Russian].

    Google Scholar 

  32. V. F. Vzyatyshev, Dielectric Waveguides (Sovetskoe Radio, Moscow, 1970) [in Russian].

    Google Scholar 

  33. I. G. Petrovskii, Ordinary Differential Equations (Prentice Hall, Englewood Cliffs, N.J., 1966; Mosk. Gos. Univ., Moscow, 1984).

  34. T. Cazenave, Semilinear Schrödinger Equations (Am. Math. Soc., Providence, R.I., 2003).

    Book  Google Scholar 

  35. E. Yu. Smol’kin and D. V. Valovik, “Guided electromagnetic waves propagating in a two-layer cylindrical dielectric waveguide with inhomogeneous nonlinear permittivity,” Adv. Math. Phys. 2015, 1 (2015).

    Article  MathSciNet  Google Scholar 

  36. F. G. Tricomi, Differential Equations (Hafner, New York, 1961).

    MATH  Google Scholar 

  37. D. V. Valovik, “Propagation of electromagnetic TE waves in a nonlinear medium with saturation,” J. Commun. Tech. Electron. 56 (11), 1311 (2011).

    Article  Google Scholar 

  38. S. J. Al-Bader and H. A. Jamid, “Guided waves in nonlinear saturable self-focusing thin films,” IEEE J. Quantum Electron. 23 (11), 1947 (1987).

    Article  Google Scholar 

  39. Ya. B. Zel’dovich and Yu. P. Raizer, “Self-focusing of light: Role of Kerr effect and striction,” JETP Lett. 3 (3), 86 (1966).

    Google Scholar 

  40. C. F. McCormick, D. R. Solli, R. Y. Chiao, and J. M. Hickmann, “Saturable nonlinear refraction in hot atomic vapor,” Phys. Rev. A 69 (2), 023804 (2004).

    Article  Google Scholar 

  41. C. Brée, A. Demircan, and G. Steinmeyer, “Saturation of the all-optical Kerr effect,” Phys. Rev. Lett. 106 (18), 183902 (2011).

    Article  Google Scholar 

  42. C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Bergé, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87 (4), 043811 (2013).

    Article  Google Scholar 

  43. M. Nurhuda, A. Suda, and L. Midorikawa, “Saturation of nonlinear susceptibility,” J. Nonlinear Opt. Phys. Mater. 13 (2), 301 (2004).

    Article  Google Scholar 

  44. Yu. N. Bibikov, A Course in Ordinary Differential Equations (Vysshaya Shkola, Moscow, 1991) [in Russian].

    Google Scholar 

  45. A. I. Markushevich, Theory of Functions of a Complex Variable (GITTL, Moscow, 1950; Prentice Hall, Englewood Cliffs, N.J., 1965).

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 18-71-10015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Valovik.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valovik, D.V. Propagation of Electromagnetic Waves in an Open Planar Dielectric Waveguide Filled with a Nonlinear Medium II: TM Waves. Comput. Math. and Math. Phys. 60, 427–447 (2020). https://doi.org/10.1134/S0965542520030161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520030161

Keywords:

Navigation