Skip to main content
Log in

On spectral properties of the Sturm–Liouville operator with power nonlinearity

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

The paper considers the nonlinear eigenvalue problem for the equation \(y^{\prime \prime }(x) = \left( \lambda - \alpha |y(x)|^{2q}\right) y(x)\) with boundary conditions \(y(0) = y(h) = 0\) and \(y^{\prime }(0) = p\), where \(\alpha \), q, and p are positive constants, \(\lambda \) is a real spectral parameter. It is proved that the nonlinear problem has infinitely many isolated negative as well as positive eigenvalues, whereas the corresponding linear problem (for \(\alpha = 0\)) has only an infinite number of negative eigenvalues. Negative eigenvalues of the nonlinear problem reduce to the solutions to the corresponding linear problem as \(\alpha \rightarrow +0\); positive ‘nonlinear’ eigenvalues are nonperturbative. Asymptotical inequalities for the eigenvalues are found. Periodicity of the eigenfunctions is proved and the period is found, zeros of the eigenfunctions are determined, and a comparison theorem is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akhmediev, N.N., Ankevich, A.: Solitons, Nonlinear Pulses and Beams. Chapman and Hall, London (1997)

    Google Scholar 

  2. Shen, Y.R.: The Principles of Nonlinear Optics. Wiley, New York (1984)

    Google Scholar 

  3. Valovik, D.V.: Integral dispersion equation method to solve a nonlinear boundary eigenvalue problem. Nonlinear Anal Real World Appl 20(12), 52–58 (2014). https://doi.org/10.1016/j.nonrwa.2014.04.007

    Article  MathSciNet  MATH  Google Scholar 

  4. Smirnov, Y.G., Valovik, D.V.: Guided electromagnetic waves propagating in a plane dielectric waveguide with nonlinear permittivity. Phys. Rev. A 91(1), 013840 (2015)

    Article  MathSciNet  Google Scholar 

  5. Valovik, D.V.: On the existence of infinitely many nonperturbative solutions in a transmission eigenvalue problem for nonlinear Helmholtz equation with polynomial nonlinearity. Appl. Math. Model. 53, 296–309 (2018)

    Article  MathSciNet  Google Scholar 

  6. Eleonskii, P.N., Oganes’yants, L.G., Silin, V.P.: Cylindrical nonlinear waveguides. Sov. Phys. JETP 35(1), 44–47 (1972)

    Google Scholar 

  7. Boardman, A.D., Egan, P., Lederer, F., Langbein, U., Mihalache, D.: Third-Order Nonlinear Electromagnetic TE and TM Guided Waves. Elsevier, Amsterdam (1991). Reprinted from Nonlinear Surface Electromagnetic Phenomena, Eds. H.-E. Ponath and G. I. Stegeman

    Book  Google Scholar 

  8. Smirnov, Y.G., Smol’kin, E.Y., Valovik, D.V.: Nonlinear double-layer Bragg waveguide: analytical and numerical approaches to investigate waveguiding problem. Adv. Numer. Anal. 1–11, 2014 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Smol’kin, Y.E., Valovik, D.V.: Guided electromagnetic waves propagating in a two-layer cylindrical dielectric waveguide with inhomogeneous nonlinear permittivity. Adv. Math. Phys. 2015, 11 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Course of Theoretical Physics (Vol. 8). Electrodynamics of Continuous Media. Butterworth-Heinemann, Oxford (1993)

    Google Scholar 

  11. Rukhlenko, I.D., Pannipitiya, A., Premarante, M., Agrawal, G.P.: Exact dispersion relation for nonlinear plasmonic waveguides. Phys. Rev. B 84(11), 113409-1–113409-4 (2011)

    Article  Google Scholar 

  12. Cazenave, T.: Semilinear Schrödinger Equations, volume 10 of Courant Lecture Notes in Mathematics. American Mathematical Society, Providence (2003)

    Google Scholar 

  13. Özbekler, A.: Sturmian theory for second order differential equations with mixed nonlinearities. Appl. Math. Comput. 259, 379–389 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Dosoudilová, M., Lomtatidze, A., Šremr, J.: Oscillatory properties of solutions to certain two-dimensional systems of non-linear ordinary differential equations. Nonlinear Anal. Theory Methods Appl. 120, 57–75 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nehari, Z.: Characteristic values associated with a class of nonlinear second-order differential equations. Acta Math. 105(3–4), 141–175 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  16. Valovik, D.V., Smirnov, Y.G.: Propagation of tm waves in a Kerr nonlinear layer. Comput. Math. Math. Phys. 48(12), 2217–2225 (2008)

    Article  MathSciNet  Google Scholar 

  17. Smirnov, Y.G., Valovik, D.V.: On the infinitely many nonperturbative solutions in a transmission eigenvalue problem for maxwell’s equations with cubic nonlinearity. J. Math. Phys. 57(10), 103504 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schürmann, H.W., Serov, V.S., Shestopalov, Y.V.: TE-polarized waves guided by a lossless nonlinear three-layer structure. Phys. Rev. E 58(1), 1040–1050 (1998)

    Article  Google Scholar 

  19. Schürmann, H.W., Serov, V.S., Shestopalov, Y.V.: Solutions to the Helmholtz equation for te-guided waves in a three-layer structure with Kerr-type nonlinearity. J. Phys. A Math. Gen. 35, 10789–10801 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schürmann, H.W., Serov, V.S.: Theory of TE-polarized waves in a lossless cubic-quintic nonlinear planar waveguide. Phys. Rev. A 93(6), 063802 (2016)

    Article  Google Scholar 

  21. Valovik, D.V.: Novel propagation regimes for TE waves guided by a waveguide filled with Kerr medium. J. Nonlinear Opt. Phys. Mater. 25(4), 1650051 (2016)

    Article  Google Scholar 

  22. Vainberg, M.M.: Variational Methods for the Study of Nonlinear Operators Holden-Day Series in Mathematical Physics, 1st edn. Holden-Day, San Francisco (1964)

    Google Scholar 

  23. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14(4), 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ince, E.L.: Ordinary Differential Equations. Longmans, Green, London (1927)

    MATH  Google Scholar 

  25. Ling, H., Wang, L.: Multiple positive solutions of boundary value problems for systems of nonlinear second-order differential equations. J. Math. Anal. Appl. 335(2), 1052–1060 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Graefa, J.R., Konga, L., Wang, H.: Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem. J. Differ. Equ. 245(5), 1185–1197 (2008)

    Article  MathSciNet  Google Scholar 

  27. Kim, C.-G., Lee, Y.-H.: Existence and multiplicity results for nonlinear boundary value problems. Comput. Math. Appl. 55(12), 2870–2886 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hea, T., Yanga, F., Chena, C., Peng, S.: Existence and multiplicity of positive solutions for nonlinear boundary value problems with a parameter. Comput. Math. Appl. 61(11), 3355–3363 (2011)

    Article  MathSciNet  Google Scholar 

  29. Korman, P., Li, Y.: Exact multiplicity of positive solutions for concave–convex and convex–concave nonlinearities. J. Differ. Equ. 257(10), 3730–3737 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Feltrina, G., Zanolin, F.: Multiple positive solutions for a superlinear problem: a topological approach. J. Differ. Equ. 259(3), 925–963 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Petrovsky, I.G.: Lectures on the Theory Ordinary Differential Equations. Moscow State University, Moscow (1984). (in Russian)

    Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Ministry of Education and Science of the Russian Federation (Agreement No. 1.894.2017/4.6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Valovik.

Additional information

Communicated by A. Constantin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valovik, D.V. On spectral properties of the Sturm–Liouville operator with power nonlinearity. Monatsh Math 188, 369–385 (2019). https://doi.org/10.1007/s00605-017-1124-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-017-1124-0

Keywords

Mathematics Subject Classification

Navigation