Skip to main content
Log in

Symmetric Matrices Whose Entries Are Linear Functions

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

There exists a large set of real symmetric matrices whose entries are linear functions in several variables such that each matrix in this set is definite at some point, that is, the matrix is definite after substituting some numbers for variables. In particular, this property holds for almost all such matrices of order two with entries depending on two variables. The same property holds for almost all matrices of order two with entries depending on a larger number of variables when this number exceeds the order of the matrix. Some examples are discussed in detail. Some asymmetric matrices are also considered. In particular, for almost every matrix whose entries are linear functions in several variables, the determinant of the matrix is positive at some point and negative at another point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. I. Zabotin and Yu. A. Chernyaev, “Newton’s method for minimizing a convex twice differentiable function on a preconvex set,” Comput. Math. Math. Phys. 58 (3), 322–327 (2018). https://doi.org/10.1134/S0965542518030144

    Article  MathSciNet  MATH  Google Scholar 

  2. N. N. Vorob’ev, Jr., and D. Yu. Grigor’ev, “Finding connected components of a semialgebraic set in subexponential time,” J. Math. Sci. 70 (4), 1847–1872 (1994). https://doi.org/10.1007/BF02112426

    Article  MathSciNet  MATH  Google Scholar 

  3. Yu. G. Evtushenko, M. A. Posypkin, L. A. Rybak, and A. V. Turkin, “Finding sets of solutions to systems of nonlinear inequalities,” Comput. Math. Math. Phys. 57 (8), 1241–1247 (2017). https://doi.org/10.1134/S0965542517080073

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Safey El Din and E. Schost, “A nearly optimal algorithm for deciding connectivity queries in smooth and bounded real algebraic sets,” J. ACM 63 (6), Article No. 48 (2017).https://doi.org/10.1145/2996450

    Article  MathSciNet  MATH  Google Scholar 

  5. C. J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard,” J. ACM 60 (6), Article No. 45 (2013).https://doi.org/10.1145/2512329

    Article  MathSciNet  MATH  Google Scholar 

  6. N. A. Sal’kov, “General principles for formation of ruled surfaces. Part 1,” Geom. Grafika 6 (4), 20–31 (2018). https://doi.org/10.12737/article_5c21f4a06dbb74.56415078

    Article  Google Scholar 

  7. V. G. Zhadan, “Primal Newton method for the linear cone programming problem,” Comput. Math. Math. Phys. 58 (2), 207–214 (2018). https://doi.org/10.1134/S0965542518020173

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Renegar, “Accelerated first-order methods for hyperbolic programming,” Math. Program. Ser. A 173, 1–35 (2019).https://doi.org/10.1007/s10107-017-1203-y

    Article  MathSciNet  MATH  Google Scholar 

  9. B. F. Lourenco, T. Kitahara, M. Muramatsu, and T. Tsuchiya, “An extension of Chubanov’s algorithm to symmetric cones,” Math. Program. Ser. A 173, 117–149 (2019).https://doi.org/10.1007/s10107-017-1207-7

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Y. Aravkin, J. V. Burke, D. Drusvyatskiy, M. P. Friedlander, and S. Roy, “Level-set methods for convex optimization,” Math. Program. Ser. B 174, 359–390 (2019).https://doi.org/10.1007/s10107-018-1351-8

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Laurent and A. Varvitsiotis, “Positive semidefinite matrix completion, universal rigidity, and the strong Arnold property,” Linear Algebra Appl. 452, 292–317 (2014).https://doi.org/10.1016/j.laa.2014.03.015

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Kurpisz, S. Leppanen, and M. Mastrolilli, “Sum-of-squares hierarchy lower bounds for symmetric formulations,” Math. Program. Ser. A (2019). https://doi.org/10.1007/s10107-019-01398-9.

  13. G. Braun, S. Pokutta, and D. Zink, “Affine reductions for LPs and SDPs,” Math. Program. Ser. A 173, 281–312 (2019).https://doi.org/10.1007/s10107-017-1221-9

    Article  MathSciNet  MATH  Google Scholar 

  14. Z. Huang and X. Zhan, “Nonsymmetric normal entry patterns with the maximum number of distinct indeterminates,” Linear Algebra Appl. 485, 359–371 (2015).https://doi.org/10.1016/j.laa.2015.08.003

    Article  MathSciNet  MATH  Google Scholar 

  15. H. H. Van and R. Quinlan, “On the maximum rank of completions of entry pattern matrices,” Linear Algebra Appl. 525, 1–19 (2017).https://doi.org/10.1016/j.laa.2017.02.035

    Article  MathSciNet  MATH  Google Scholar 

  16. H. H. Van and R. Quinlan, “Almost-nonsingular entry pattern matrices,” Linear Algebra Appl. 578, 334–355 (2019).https://doi.org/10.1016/j.laa.2019.05.006

    Article  MathSciNet  MATH  Google Scholar 

  17. R. A. Brualdi, Z. Huang, and X. Zhan, “Singular, nonsingular, and bounded rank completions of ACI-matrices,” Linear Algebra Appl. 433, 1452–1462 (2010).https://doi.org/10.1016/j.laa.2010.05.018

    Article  MathSciNet  MATH  Google Scholar 

  18. J. McTigue and R. Quinlan, “Partial matrices of constant rank,” Linear Algebra Appl. 446, 177–191 (2014).https://doi.org/10.1016/j.laa.2013.12.020

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Borobia and R. Canogar, “ACI-matrices of constant rank over arbitrary fields,” Linear Algebra Appl. 527, 232–259 (2017).https://doi.org/10.1016/j.laa.2017.04.002

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Yu. Nikitin and A. N. Rybalov, “On complexity of the satisfiability problem of systems over finite posets,” Prikl. Diskret. Mat., No. 39, 94–98 (2018). https://doi.org/10.17223/20710410/39/8

  21. A. N. Rybalov, “Generic amplification of recursively enumerable sets,” Algebra Logic 57 (4), 289–294 (2018). https://doi.org/10.1007/s10469-018-9500-y

    Article  MathSciNet  MATH  Google Scholar 

  22. A. N. Rybalov, “On generic complexity of decidability problem for Diophantine systems in the Skolem’s form,” Prikl. Diskret. Mat., No. 37, 100–106 (2017). https://doi.org/10.17223/20710410/37/8

  23. G. I. Malashonok, “MathPartner computer algebra,” Program. Comput. Software 43 (2), 112–118 (2017). https://doi.org/10.1134/S0361768817020086

    Article  MathSciNet  Google Scholar 

  24. A. V. Smirnov, “The bilinear complexity and practical algorithms for matrix multiplication,” Comput. Math. Math. Phys. 53 (12), 1781–1795 (2013). https://doi.org/10.1134/S0965542513120129

    Article  MathSciNet  Google Scholar 

  25. A. V. Smirnov, “A bilinear algorithm of length 22 for approximate multiplication of 2 × 7 and 7 × 2 matrices,” Comput. Math. Math. Phys. 55 (4), 541–545 (2015). https://doi.org/10.1134/S0965542515040168

    Article  MathSciNet  MATH  Google Scholar 

  26. V. Ya. Pan, “Fast matrix multiplication and its algebraic neighborhood,” Sb. Math. 208 (11), 1661–1704 (2017). https://doi.org/10.1070/SM8833

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Cenk and M. A. Hasan, “On the arithmetic complexity of Strassen-like matrix multiplications,” J. Symbolic Comput. 80 (2), 484–501 (2017).https://doi.org/10.1016/j.jsc.2016.07.004

    Article  MathSciNet  MATH  Google Scholar 

  28. D. A. Dolgov, “Polynomial greatest common divisor as a solution of system of linear equations,” Lobachevskii J. Math. 39 (7), 985–991 (2018).https://doi.org/10.1134/S1995080218070090

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Bernardi, G. Blekherman, and G. Ottaviani, “On real typical ranks,” Boll. Unione Mat. Ital. 11 (3), 293–307 (2018).https://doi.org/10.1007/s40574-017-0134-0

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to the reviewer for the remarks made.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Seliverstov.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seliverstov, A.V. Symmetric Matrices Whose Entries Are Linear Functions. Comput. Math. and Math. Phys. 60, 102–108 (2020). https://doi.org/10.1134/S0965542520010121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520010121

Keywords:

Navigation