Skip to main content
Log in

Complexity of Methods for Approximating Convex Compact Bodies by Double Description Polytopes and Complexity Bounds for a Hyperball

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A comparative analysis of the complexity of approaches to the approximation of convex compact bodies by double description polytopes is provided as applied to a ball. A complexity bound for the Estimate Refinement method is obtained in the case of approximation of a multidimensional ball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Trall, “The double description method,” Contributions Theory Games 2, 51–73 (1953).

    MathSciNet  Google Scholar 

  2. A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev, Feasible Goals Method: Mathematical Foundations and Environmental Applications (Edwin Mellen, New York, 1999).

    Google Scholar 

  3. E. M. Bronshtein, “Polyhedral approximation of convex sets,” Sovrem. Mat. Fundam. Napravlen. Geom. 22, 5–37 (2007).

    Google Scholar 

  4. R. Schneider, “Zur optimalen Approximation konvexer Hyperflächen durch Polyeder,” Math. Ann. 256, 289–301 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Schneider, “Polyhedral approximation of smooth convex bodies,” J. Math. Anal. Appl. 128 (2), 470–474 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  6. G. K. Kamenev, A. V. Lotov, and T. S. Maiskaya, “Iterative method for constructing coverings of the multidimensional unit sphere,” Comput. Math. Math. Phys. 53 (2), 131–143 (2013).

    Article  MathSciNet  Google Scholar 

  7. G. K. Kamenev, A. V. Lotov, and T. S. Maiskaya, “Construction of suboptimal coverings of the multidimensional unit sphere,” Dokl. Math. 85, 425–427 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  8. T. S. Maiskaya, “Estimation of the radius of covering of the multidimensional unit sphere by metric net generated by spherical system of coordinates,” in Collected Papers of Young Scientists from the Faculty of Computational Mathematics and Cybernetics of Moscow State University (Vychisl. Mat. Kibern. Mosk. Gos. Univ., Moscow, 2011), No. 8, pp. 83–98 [in Russian].

  9. D. Avis, D. Bremner, and R. Seidel, “How good are convex hull algorithms?” Comput. Geom. 7 (5–6), 265–301 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. B. Fourier, “Solution d’une question particuliere du calcul des inegalites,” in Nouveau bulletin des sciences par la societe philomatique de Paris (Paris, 1826).

  11. E. Burger, “Über homogene lineare Ungleichungssysteme,” Z. Angew. Math. Mech. 36 (3–4) (1956).

  12. S. N. Chernikov, Linear Inequalities (Nauka, Moscow, 1966) [in Russian].

    MATH  Google Scholar 

  13. K. Fukuda and A. Prodon, “Double description method revisited,” in Combinatorics and Computer Science, Lect. Notes Comput. Sci. 1120, 91–111 (1996).

  14. V. A. Bushenkov and A. V. Lotov, “An algorithm for analyzing the independence of inequalities in a linear system,” USSR Comput. Math. Math. Phys. 20 (3), 14–24 (1980).

    Article  MATH  Google Scholar 

  15. V. A. Bushenkov and A. V. Lotov, “Methods and algorithms for analyzing linear systems by constructing generalized sets of attainability,” USSR Comput. Math. Math. Phys. 20 (5), 38–49 (1980).

    Article  MATH  Google Scholar 

  16. O. L. Chernykh, “Construction of the convex hull of a point set as a system of linear inequalities,” Comput. Math. Math. Phys. 32 (8), 1085–1096 (1992).

    MathSciNet  Google Scholar 

  17. R. Seidel, A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions, Technical Report (Univ. of British Columbia, Vancouver, 1981).

  18. F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction (Springer-Verlag, New York, 1985).

    Book  MATH  Google Scholar 

  19. C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The Quickhull algorithm for convex hulls,” ACM Trans. Math. Software 22 (4), 469–483 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Chand and S. Kapur, “An algorithm for convex polytopes,” J. ACM 17, 78–86 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Chazelle, “An optimal convex hull algorithm in any fixed dimension,” Discrete Comput. Geom., No. 10, 377–409 (1993).

  22. V. A. Bushenkov and A. V. Lotov, Methods for the Construction and Use of Generalized Reachable Sets (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1982) [in Russian].

    Google Scholar 

  23. G. K. Kamenev, “The class of adaptive algorithms for approximating convex bodies by polyhedra,” Comput. Math. Math. Phys. 32 (1), 114–127 (1992).

    MathSciNet  MATH  Google Scholar 

  24. G. K. Kamenev, Candidate’s Dissertation in Mathematics and Physics (Mosk. Fiz.-Tekh. Inst., Moscow, 1986).

  25. A. V. Lotov, Doctoral Dissertation in Mathematics and Physics (Mosk. Fiz.-Tekh. Inst., Moscow, 1985).

  26. G. K. Kamenev, “Analysis of an algorithm for approximating convex bodies,” Comput. Math. Math. Phys. 34 (4), 521–528 (1994).

    MathSciNet  MATH  Google Scholar 

  27. R. V. Efremov and G. K. Kamenev, “Optimal growth order of the number of vertices and facets in the class of Hausdorff methods for polyhedral approximation of convex bodies,” Comput. Math. Math. Phys. 51 (6), 952–964 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  28. G. K. Kamenev, “Method for polyhedral approximation of a ball with an optimal order of growth of the facet structure cardinality,” Comput. Math. Math. Phys. 54 (8), 1201–1213 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  29. G. K. Kamenev, “Asymptotic properties of the estimate refinement method in polyhedral approximation of multidimensional balls,” Comput. Math. Math. Phys. 55 (10), 1619–1632 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  30. S. A. Abramov, Lectures in the Complexity of Algorithms (MTsNMO, Moscow, 2009).

  31. P. M. Gruber, “Approximation of convex bodies,” Convexity and Its Applications (Birkhäuser, Basel, 1983), pp. 131–162.

    Book  Google Scholar 

  32. C. A. Rogers, Packing and Covering (Cambridge Univ. Press, Cambridge, 1964).

    MATH  Google Scholar 

  33. A. V. Lotov and T. S. Maiskaya, “Nonadaptive methods for polyhedral approximation of the Edgeworth–Pareto hull using suboptimal coverings on the direction sphere,” Comput. Math. Math. Phys. 52 (1), 31–42 (2012).

    Article  MathSciNet  Google Scholar 

  34. E. S. Polovinkin and M. V. Balashov, Elements of Convex and Strongly Convex Analysis (Fizmatlit, Moscow, 2004) [in Russian].

    MATH  Google Scholar 

  35. J. Thorpe, Elementary Topics in Differential Geometry (Springer-Verlag, New York, 1979).

    Book  MATH  Google Scholar 

  36. D. Avis and K. Fukuda, “A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra,” Discrete Comput. Geom. 8 (3), 295–313 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  37. D. Bremner, K. Fukuda, and A. Marzetta, “Primal-dual methods for vertex and facet enumeration,” Discrete Comput. Geom. 20 (3), 333–357 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  38. L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, and V. Gurvich, “Generating all vertices of a polytope is hard,” Discrete Comput. Geom. 39 (1–3), 174–190 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  39. D. D. Bremner, On the Complexity of Vertex and Facet Enumeration for Convex Polytopes (School of Computer Science, McGill University, Montreal, 1997).

Download references

ACKNOWLEDGMENTS

The author is sincerely grateful to G.K. Kamenev for his interest in this work, valuable comments, and discussion of the results.

Funding

This work was supported in part by the Spanish National Research Council (CSIC) (MTM2017-86875-C3-1-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Efremov.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efremov, R.V. Complexity of Methods for Approximating Convex Compact Bodies by Double Description Polytopes and Complexity Bounds for a Hyperball. Comput. Math. and Math. Phys. 59, 1204–1213 (2019). https://doi.org/10.1134/S0965542519070066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542519070066

Keywords:

Navigation