Skip to main content
Log in

Efficiency of the estimate refinement method for polyhedral approximation of multidimensional balls

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The estimate refinement method for the polyhedral approximation of convex compact bodies is analyzed. When applied to convex bodies with a smooth boundary, this method is known to generate polytopes with an optimal order of growth of the number of vertices and facets depending on the approximation error. In previous studies, for the approximation of a multidimensional ball, the convergence rates of the method were estimated in terms of the number of faces of all dimensions and the cardinality of the facial structure (the norm of the f-vector) of the constructed polytope was shown to have an optimal rate of growth. In this paper, the asymptotic convergence rate of the method with respect to faces of all dimensions is compared with the convergence rate of best approximation polytopes. Explicit expressions are obtained for the asymptotic efficiency, including the case of low dimensions. Theoretical estimates are compared with numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Gruber, “Aspects of approximation of convex bodies,” in Handbook of Convex Geometry, Ed. by P. M. Gruber and J. M. Willis (Elsevier Science, Amsterdam, 1993), Ch. 1.10, pp. 321–345.

    Google Scholar 

  2. E. M. Bronshtein, “Polyhedral approximation of convex sets,” Sovrem. Mat. Fundam. Napravlen. Geom. 22, 5–37 (2007).

    Google Scholar 

  3. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Nauka, Moscow, 1969; Gordon and Breach, New York, 1986).

    Google Scholar 

  4. A. V. Lotov, “On the concept of generalized reachable sets and their construction for linear control systems,” Dokl. Akad. Nauk SSSR 250 (5), 1081–1083 (1980).

    MathSciNet  Google Scholar 

  5. A. V. Lotov, V. A. Bushenkov, G. K. Kamenev, and O. L. Chernykh, Computer and Search for Balanced Tradeoff: The Feasible Goals Method (Nauka, Moscow, 1997) [in Russian].

    MATH  Google Scholar 

  6. A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev, Interactive Decision Maps: Approximation and Visualization of Pareto Frontier (Kluwer Academic, Boston, 2004).

    Book  MATH  Google Scholar 

  7. V. A. Bushenkov and A. V. Lotov, Methods for the Construction and Use of Generalized Reachable Sets (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1982) [in Russian].

    MATH  Google Scholar 

  8. G. K. Kamenev, Analysis of Iterative Methods for Polyhedral Approximation of Convex Bodies (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1986) [in Russian].

    Google Scholar 

  9. G. K. Kamenev, “Analysis of an algorithm for approximating convex bodies,” Comput. Math. Math. Phys. 34 (4), 521–528 (1994).

    MathSciNet  MATH  Google Scholar 

  10. R. V. Efremov and G. K. Kamenev, “A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies,” Comput. Math. Math. Phys. 42 (1), 20–29 (2002).

    MathSciNet  MATH  Google Scholar 

  11. G. K. Kamenev, “Efficient algorithms for approximation of nonsmooth convex bodies,” Comput. Math. Math. Phys. 39 (3), 423–427 (1999).

    MathSciNet  MATH  Google Scholar 

  12. G. K. Kamenev, “The initial convergence rate of adaptive methods for polyhedral approximation of convex bodies,” Comput. Math. Math. Phys. 48 (5), 724–738 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  13. R. V. Efremov and G. K. Kamenev, “Optimal growth order of the number of vertices and facets in the class of Hausdorff methods for polyhedral approximation of convex bodies,” Comput. Math. Math. Phys. 51 (6), 952–964 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  14. G. K. Kamenev, Optimal Adaptive Methods for Polyhedral Approximation of Convex Bodies (Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2007) [in Russian].

    MATH  Google Scholar 

  15. K. Böröczky, Jr., “Polytopal approximation bounding the number of k-faces,” J. Approx. Theory 102, 263–285 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Böröczky, Jr., F. Fodov, and V. Vigh, “Approximating 3-dimensional convex bodies by polytopes with a restricted number of edges,” Beit. Alg. Geom. 49, 177–193 (2008).

    MathSciNet  MATH  Google Scholar 

  17. S. M. Dzholdybaeva and G. K. Kamenev, Experimental Study of Polyhedral Approximation of Convex Bodies (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1991) [in Russian].

    MATH  Google Scholar 

  18. G. K. Kamenev, A. V. Lotov, and T. S. Maiskaya, “Construction of suboptimal coverings of the multidimensional unit sphere,” Dokl. Math. 85, 425–427 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  19. G. K. Kamenev, A. V. Lotov, and T. S. Maiskaya, “Iterative method for constructing coverings of the multidimensional unit sphere,” Comput. Math. Math. Phys. 53 (2), 131–143 (2013).

    Article  MathSciNet  Google Scholar 

  20. G. K. Kamenev, “Asymptotic properties of the estimate refinement method in polyhedral approximation of multidimensional balls,” Comput. Math. Math. Phys. 55 (10), 1619–1632 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  21. C. A. Rogers, Packing and Covering (Cambridge Univ. Press, Cambridge, 1964; Mir, Moscow, 1968).

    MATH  Google Scholar 

  22. J. H. Conway and N. Sloane, Sphere Packings, Lattices, and Groups (Springer-Verlag, New York, 1988; Mir, Moscow, 1990), Vol. 1.

    Book  MATH  Google Scholar 

  23. A. Bröndsted, An Introduction to Convex Polytopes (Springer-Verlag, New York, 1988; Mir, Moscow, 1988).

    MATH  Google Scholar 

  24. B. Grünbaum, Convex Polytopes, 2nd ed. (Springer, New York, 2003).

    Book  MATH  Google Scholar 

  25. S. M. Dzholdybaeva and G. K. Kamenev, “Numerical analysis of the efficiency of an algorithm for approximating convex bodies by polyhedra,” Comput. Math. Math. Phys. 32 (6), 739–746 (1992).

    MathSciNet  MATH  Google Scholar 

  26. G. K. Kamenev, “Method for polyhedral approximation of a ball with an optimal order of growth of the facet structure cardinality,” Comput. Math. Math. Phys. 54 (8), 1201–1213 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  27. G. K. Kamenev, Numerical Study of the Efficiency of Polyhedral Approximation Methods for Convex Bodies (Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2010) [in Russian].

    Google Scholar 

  28. R. Seidel, “The upper bound theorem for polytopes: An easy proof of its asymptotic version,” Comput. Geom. Theory Appl. 5, 115–116 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  29. G. A. Kabatyanskii and V. I. Levenshtein, “Bounds for packings on a sphere and in space,” Probl. Peredachi Inf. 14 (1), 3–25 (1978).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Kamenev.

Additional information

Original Russian Text © G.K. Kamenev, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 5, pp. 756–767.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamenev, G.K. Efficiency of the estimate refinement method for polyhedral approximation of multidimensional balls. Comput. Math. and Math. Phys. 56, 744–755 (2016). https://doi.org/10.1134/S0965542516050080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542516050080

Keywords

Navigation