Skip to main content
Log in

Solution of Fluid Dynamics Problems in Truncated Computational Domains

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A mathematical model consisting of quasi-hydrodynamic equations and Dong’s outflow boundary conditions is proposed for solving fluid dynamics problems in a truncated computational domain. A solution algorithm based on finite-element and control-volume methods is developed. The Kovasznay flow and the flow over a backward-facing step in truncated computational domains are numerically simulated. A comparative analysis of the numerical results shows that the proposed mathematical model adequately describes the hydrodynamic flows in a truncated domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. I. Orlanski, “A simple boundary condition for unbounded hyperbolic flows,” J. Comput. Phys. 21, 251–269 (1976).

    Article  MATH  Google Scholar 

  2. G. W. Hedstrom, “Nonreflecting boundary conditions for nonlinear hyperbolic systems,” J. Comput. Phys. 30, 222–237 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  3. D. H. Rudy and J. C. Strikwerda, “A nonreflecting outflow boundary condition for subsonic Navier–Stokes calculations,” J. Comput. Phys. 36, 55–70 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  4. T. C. Papanastasiou, N. Malamataris, and K. Ellwood, “A new outflow boundary condition,” Int. J. Numer. Methods Fluids 14, 587–608 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Braack and P. B. Mucha, “Directional do-nothing condition for the Navier–Stokes equations,” J. Comput. Math. 32, 507–521 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Dong, G. E. Karniadakis, and C. Chryssostomidis, “A robust and accurate outflow boundary condition for incompressible flow simulations on severely-truncated unbounded domains,” J. Comput. Phys. 261, 83–105 (2014). https://doi.org/10.1016/j.jcp.2013.12.042

    Article  MathSciNet  MATH  Google Scholar 

  7. J.-E. W. Lombard, D. Moxey, J. F. A. Hoessler, S. Dhandapani, M. J. T. Taylor, and S. J. Sherwin, “Implicit large-eddy simulation of a wingtip vortex,” AIAA J. 54 (2), 1–13 (2015).

    Google Scholar 

  8. C. D. Cantwella, D. Moxeya, A. Comerforda, A. Bolisa, G. Roccoa, G. Mengaldoa, D. de Graziaa, S. Yakovlevb, J.-E. Lombarda, D. Ekelschota, B. Jordia, H. Xua, Y. Mohamieda, C. Eskilssonc, B. Nelsonb, P. Vosa, C. Biottoa, R. M. Kirbyb, and S. J. Sherwin, Nektar++: An Open-Source Spectral/Element Framework (CPC, 2015).

    Google Scholar 

  9. Ph. Miron and J. Vétel, “Towards the detection of moving separation in unsteady flows,” J. Fluid Mech. 779, 819–841 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Fan, “The standard upwind compact difference schemes for incompressible flow simulations,” J. Comput. Phys. 322, 74–112 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Q. Garcia, A. A. Gomes, and M. B. Hecke, “On the performance of the DG method with a directional do-nothing boundary condition,” J. Braz. Soc. Mech. Sci. Eng. 39 (10), 3919–3929 (2017).

    Article  Google Scholar 

  12. Y. T. Delorme, K. Puri, J. Nordstrom, V. Linders, S. Dong, and S. H. Frankel, “A simple and efficient incompressible Navier–Stokes solver for unsteady complex geometry flows on truncated domains,” Comput. Fluids 150, 84–94 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  13. T. G. Elizarova, Quasi-Gas Dynamic Equations (Nauchnyi Mir, Moscow, 2007; Springer, Berlin, 2009).

  14. T. G. Elizarova, “Time averaging as an approximate technique for constructing quasi-gasdynamic and quasi-hydrodynamic equations,” Comput. Math. Math. Phys. 51 (11), 1973–1982 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  15. K. S. Snigur, Candidate’s Dissertation in Mathematics and Physics (Computing Center, Far Eastern Branch, Russian Academy of Sciences, Khabarovsk, 2016).

  16. L. I. G. Kovasznay, “Laminar flow behind a two-dimensional grid,” Math. Proc. Cambridge 44 (1), 58–62 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  17. http://lits.ccfebras.ru.

Download references

ACKNOWLEDGMENTS

This research was supported through computational resources provided by the Shared Facility Center “Data Center of FEB RAS” [17].

This work was funded by the Russian Foundation for Basic Research, project nos. 18-05-00530, 18-35-00139.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Snigur.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potapov, I.I., Snigur, K.S. Solution of Fluid Dynamics Problems in Truncated Computational Domains. Comput. Math. and Math. Phys. 59, 484–492 (2019). https://doi.org/10.1134/S0965542519030138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542519030138

Keywords:

Navigation