Skip to main content
Log in

Frontier Visualization and Estimation of Returns to Scale in Free Disposal Hull Models

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The free disposal hull (FDH) model of production technology assumes free disposability of all inputs and outputs, but does not make any convexity assumptions. In this paper, we develop an algorithm for the reconstruction of the frontier of the FDH technology that corresponds to its sections by different two-dimensional planes. From a practical perspective, the suggested algorithm is useful for the visualization and exploration of the efficient frontier of the FDH technology. Furthermore, based on the suggested algorithm, we develop a new procedure for the evaluation of returns to scale in the FDH technology. Compared to the existing methods, our approach does not require assessing the efficiency of productive units in the reference technologies, which is known to be a computationally intensive task. Our theoretical results are confirmed by computational experiments in applications with real-life data sets from different industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. Banker, Cooper, Seiford and Zhu [27], Zelenyuk [28], Sahoo and Tone [29] and Krivonozhko, Førsund and Lychev [30] provide reviews of recent developments of the literature on RTS. Podinovski, Chambers, Atici and Deineko [31] extend the notion of RTS based on the one-sided scale elasticity to any technology which is a polyhedral set. Podinovski [23] develops a further extension of RTS to any convex technology.

  2. It is worth noting that, without any additional assumptions or heuristic rules, the standard notion of local RTS in the FDH technology is trivial and uninteresting. Indeed, at any efficient observed DMU in the FDH technology, the right-hand scale elasticity is equal to zero and the left-hand scale elasticity is undefined (or can be formally taken equal to \( + \infty \)). Therefore, every efficient DMU in the FDH technology exhibits decreasing RTS on the right and increasing RTS on the left. Cesaroni et al. [19] suggest an alternative definition of local RTS in the FDH technology which takes into account the ray average productivity of DMUs in some small but finite (not marginal) ε-neighbourhood of the DMU under the assessment. The resulting RTS characterization depends on the value of ε chosen by the analyst.

  3. By definition, DMU \(({{X}_{o}},{{Y}_{o}})\) is (strongly) efficient if there exists no DMU \((X',Y') \in {{T}_{{{\text{FDH}}}}}\) such that \(X' \leqslant {{X}_{o}}\), \(Y' \geqslant {{Y}_{o}}\), and \(({{X}_{o}},{{Y}_{o}}) \ne (X',Y')\). The assumption that DMU \(({{X}_{o}},{{Y}_{o}})\) is strongly efficient is not necessary and made only in order to simplify the exposition. For example, for the notion of (global) RTS to be correctly defined, it suffices to assume that DMU \(({{X}_{o}},{{Y}_{o}})\) is only output radial efficient in technology \({{T}_{{{\text{FDH}}}}}\). In order to evaluate RTS using the input-oriented programs (2) and (3), we need to assume that DMU \(({{X}_{o}},{{Y}_{o}})\) is both input and output radial efficient [16, pp. 243–244]. This is clearly a weaker assumption than the assumption of strong efficiency.

REFERENCES

  1. F. R. Førsund and L. Hjalmarsson, “Calculating scale elasticity in DEA models,” J. Operat. Res. Soc. 55 (10), 1023–1038 (2004).

    Article  MATH  Google Scholar 

  2. R. D. Banker, A. Charnes, and W. W. Cooper, “Some models for estimating technical and scale inefficiencies in data envelopment analysis,” Management Sci. 30 (9), 1078–1092 (1984).

    Article  MATH  Google Scholar 

  3. R. D. Banker and R. M. Thrall, “Estimation of returns to scale using data envelopment analysis,” Eur. J. Operat. Res. 62 (1), 74–84 (1992).

    Article  MATH  Google Scholar 

  4. P. Hadjicostas and A. C. Soteriou, “One-sided elasticities and technical efficiency in multi-output production: A theoretical framework,” Eur. J. Operat. Res. 168 (2), 425–449 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  5. R. G. Chambers and R. Färe, “A 'calculus' for data envelopment analysis,” J. Productivity Anal. 30 (3), 169–175 (2008).

    Article  Google Scholar 

  6. V. V. Podinovski, F. R. Førsund, and V. E. Krivonozhko, “A simple derivation of scale elasticity in data envelopment analysis,” Eur. J. Operat. Res. 197 (1), 149–153 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  7. V. V. Podinovski and F. R. Førsund, “Differential characteristics of efficient frontiers in data envelopment analysis,” Operat. Res. 58 (6), 1743–1754 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Deprins, L. Simar, and H. Tulkens, “Measuring labor-efficiency in post offices,” in The Performance of Public Enterprises: Concepts and Measurements, Ed. by M. Marchand, P. Pestieau, and H. Tulkens (North-Holland, Amsterdam, 1984), pp. 243–267.

    Google Scholar 

  9. K. Kerstens and P. Vanden Eeckaut, “Estimating returns to scale using non-parametric deterministic technologies: A new method based on goodness-of-fit,” Eur. J. Operat. Res. 113 (1), 206–214 (1999).

    Article  MATH  Google Scholar 

  10. W. Briec, K. Kerstens, H. Leleu, and P. Vanden Eeckaut, “Returns to scale on nonparametric deterministic technologies: Simplifying goodness-of-fit methods using operations on technologies,” J. Productivity Anal. 14 (3), 267–274 (2000).

    Article  Google Scholar 

  11. R. Färe, S. Grosskopf, and C. A. K. Lovell, “The structure of technical efficiency,” Scand. J. Econ. 85 (2), 181–190 (1983).

    Article  MATH  Google Scholar 

  12. R. Färe, S. Grosskopf, and C. A. K. Lovell, The Measurement of Efficiency of Production (Kluwer, Boston, 1985).

    Book  Google Scholar 

  13. V. V. Podinovski, “On the linearization of reference technologies for testing returns to scale in FDH models,” Eur. J. Operat. Res. 152 (3), 800–802 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Soleimani-damaneh, G. R. Jahanshahloo, and M. Reshadi, “On the estimation of returns-to-scale in FDH models,” Eur. J. Operat. Res. 174 (2), 1055–1059 (2006).

    Article  MATH  Google Scholar 

  15. H. Leleu, “A linear programming framework for free disposal hull technologies and cost functions: Primal and dual models,” Eur. J. Operat. Res. 168 (2), 340–344 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  16. V. V. Podinovski, “Efficiency and returns to scale on the 'no free lunch' assumption only,” J. Productivity Anal. 22 (3), 227–257 (2004).

    Article  Google Scholar 

  17. V. V. Podinovski, “Local and global returns to scale in performance measurement,” J. Operat. Res. Soc. 55 (2), 170–178 (2004).

    Article  MATH  Google Scholar 

  18. R. D. Banker, “Estimating most productive scale size using data envelopment analysis,” Eur. J. Operat. Res. 17 (1), 35–44 (1984).

    Article  MATH  Google Scholar 

  19. G. Cesaroni, K. Kerstens, and I. Van de Woestyne, “Global and local scale characteristics in convex and nonconvex nonparametric technologies: A first empirical exploration,” Eur. J. Operat. Res. 259 (2), 576–586 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  20. V. E. Krivonozhko, O. B. Utkin, A. V. Volodin, I. A. Sablin, and M. Patrin, “Constructions of economic functions and calculations of marginal rates in DEA using parametric optimization methods,” J. Operat. Res. Soc. 55 (10), 1049–1058 (2004).

    Article  MATH  Google Scholar 

  21. V. E. Krivonozhko and A. V. Lychev, “Algorithms for construction of efficient frontier for nonconvex models on the basis of optimization methods,” Dokl. Math. 96 (2), 541–544 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  22. V. E. Krivonozhko, A. V. Lychev, and E. A. Kalashnikov, “Constructions of input and output isoquants for nonconvex multidimensional models,” Proceedings of the OPTIMA-2017 Conference, Petrovac, Montenegro, October 2–7, 2017, Ed. by Yu. G. Evtushenko, M. Yu. Khachay, O. V. Khamisov, Yu. A. Kochetov, V. U. Malkova, and M. A. Posypkin, pp. 336–342.

  23. V. V. Podinovski, “Returns to scale in convex production technologies,” Eur. J. Operat. Res. 258 (3), 970–982 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  24. F. R. Førsund, L. Hjalmarsson, V. E. Krivonozhko, and O. B. Utkin, “Calculation of scale elasticities in DEA models: Direct and indirect approaches,” J. Productivity Anal. 28 (1–2), 45–56 (2007).

    Article  Google Scholar 

  25. V. E. Krivonozhko, F. R. Førsund, and A. V. Lychev, “A note on imposing strong complementary slackness conditions in DEA,” Eur. J. Operat. Res. 220 (3), 716–721 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  26. Lp_Solve Reference Guide, http://lpsolve.sourceforge.net/5.5/. Accessed April 24, 2018.

  27. R. D. Banker, W. W. Cooper, L. M. Seiford, and J. Zhu, “Returns to scale in DEA,” Handbook on Data Envelopment Analysis, Ed. by W. W. Cooper, L. Seiford, and J. Zhu, 2nd ed. (Springer Science + Business Media, New York, 2011), pp. 41–70.

  28. V. Zelenyuk, “A scale elasticity measure for directional distance function and its dual: Theory and DEA estimation,” Eur. J. Operat. Res. 228 (3), 592–600 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  29. B. K. Sahoo and K. Tone, “Scale elasticity in non-parametric DEA approach,” in Data Envelopment Analysis: A Handbook of Models and Methods, Ed. by J. Zhu (Springer Science + Business Media, New York, 2015), pp. 269–290.

  30. V. E. Krivonozhko, A. V. Lychev, and F. R. Førsund, “Measurement of returns to scale in radial DEA models,” Comput. Math. Math. Phys. 57 (1), 83–93 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  31. V. V. Podinovski, R. G. Chambers, K. B. Atici, and I. D. Deineko, “Marginal values and returns to scale for nonparametric production frontiers,” Operat. Res. 64 (1), 236–250 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  32. V. E. Krivonozhko and A. V. Lychev, “Frontier visualization for nonconvex models with the use of purposeful enumeration methods,” Dokl. Akad. Nauk 96 (3), 650–653 (2017).

    MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study is supported by the Russian Science Foundation (project no. 17-11-01353). The authors are grateful to V.V. Podinovski whose suggestions have led to improvements of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. E. Krivonozhko or A. V. Lychev.

Additional information

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivonozhko, V.E., Lychev, A.V. Frontier Visualization and Estimation of Returns to Scale in Free Disposal Hull Models. Comput. Math. and Math. Phys. 59, 501–511 (2019). https://doi.org/10.1134/S0965542519030114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542519030114

Keywords:

Navigation