Skip to main content
Log in

Spherical Shell of the Boundary of a Compact Set with a Minimum Cross-Sectional Area Formed by a Two-Dimensional Plane

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

For a given compact set, the finite-dimensional problem of constructing a spherical shell of its boundary such that the shell cross section formed by a two-dimensional plane passing through its center has a minimum area is considered. It is proved that the problem has a solution, and a criterion is found under which the solution set is bounded. The objective function of the given optimization problem is shown to be convex, and a formula for its subdifferential is derived. A criterion for solving the problem is obtained, which is used to establish some properties of the solution and to find conditions for solution uniqueness. In the two-dimensional case when the compact set is a convex body, it is proved that the solution sets of the given problem and the asphericity problem for this body intersect at a single point that is the solution of the problem of finding a least-thickness spherical shell of the boundary of the given body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Blaschke, Kreis und Kugel (Chelsea, New York, 1949).

    MATH  Google Scholar 

  2. T. Bonnesen and W. Fenchel, Theory der konvexen Korper (Springer-Verlag, Berlin, 1974).

    Book  MATH  Google Scholar 

  3. L. F. Toth, Lagerungen in der Ebene auf der Kugel und im Raum (Springer-Verlag, Berlin, 1972).

    Book  MATH  Google Scholar 

  4. M. D’Ocagne, “Sur certaine figures minimales,” Bull. Soc. Math. France 12, 168–177 (1884).

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Lebesque, “Sur quelques question de minimum, relatives and courbes orbiformes, et sur leurs rapports avec le calcul des variations,” J. Math. Pures Appl. 4, 67–96 (1921).

    Google Scholar 

  6. T. Bonnesen, “Über das isoperimetrische Defizit ebener Figuren,” Math. Ann. 91, 252–268 (1924).

    Article  MathSciNet  MATH  Google Scholar 

  7. St. Vincze, “Über den Minimalkzeisring einer Eiline,” Acta. Sci. Math. Acta. Univ. Szeged 11 (3), 133–138 (1947).

    Google Scholar 

  8. I. Vincze, “Über Kreisringe, die eine Eiline einschlissen,” Stud. Sci. Math. Hungarica 9 (1–2), 155–159 (1974).

    MathSciNet  Google Scholar 

  9. N. Kriticos, “Über konvexe Flachen und eineschlissende Kugeln,” Math. Ann. 96, 583–586 (1927).

    Article  MathSciNet  Google Scholar 

  10. I. Barany, “On the minimal ring containing the boundary of convex body,” Acta. Sci. Math. Acta. Univ. Szeged 52 (1–2), 93–100 (1988).

    MathSciNet  MATH  Google Scholar 

  11. S. I. Dudov, “Estimate of the boundary of a convex compact set by a spherical annulus,” Izv. Saratov. Univ. Nov. Ser. Mat. Mekh. Inf. 1 (2), 64–75 (2001).

    Google Scholar 

  12. M. S. Nikol’skii and D. B. Silin, “On the best approximation of a convex compact set by elements of addial,” Proc. Steklov Inst. Math. 211, 306–321 (1995).

    Google Scholar 

  13. S. I. Dudov and I. V. Zlatorunskaya, “Uniform estimate of a compact convex set by a ball in an arbitrary norm,” Sb. Math. 191 (10), 1433–1458 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  14. S. I. Dudov, “Systematization of problems on ball estimates of a convex compactum,” Sb. Math. 206 (9), 1260–1280 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  15. V. V. Makeev, “Asphericity of shadows of a convex body,” J. Math. Sci. 140 (4), 535–541 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  16. G. K. Kamenev, “The initial convergence rate of adaptive methods for polyhedral approximation of convex bodies,” Comput. Math. Math. Phys. 48 (5), 724–738 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  17. Yu. E. Nesterov, Methods of Convex Optimization (Mosk. Tsentr Neprer. Mat. Obrazovan., Moscow, 2010) [in Russian].

    Google Scholar 

  18. S. I. Dudov and E. A. Meshcheryakova, “Characterization of solution stability for the problem of asphericity of a convex body,” Izv. Saratov. Gos. Univ. Nov. Ser. Mat. Mekh. Inf. 11 (2), 20–28 (2011).

    Google Scholar 

  19. S. I. Dudov and E. A. Meshcheryakova, “Method for finding an approximate solution of the asphericity problem for a convex body,” Comput. Math. Math. Phys. 53 (10), 1483–1493 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. I. Dudov and E. A. Meshcheryakova, “On asphericity of convex body,” Russ. Math. 59 (2), 36–47 (2015).

    Article  MATH  Google Scholar 

  21. B. N. Pshenichnyi, Convex Analysis and Optimization Problems (Nauka, Moscow, 1980) [in Russian].

    MATH  Google Scholar 

  22. F. Clarke, Optimization and Nonsmooth Analysis (Wiley, New York, 1983).

    MATH  Google Scholar 

  23. V. F. Dem’yanov and L. V. Vasil’ev, Nondifferentiable Optimization (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

  24. V. F. Dem’yanov and A. M. Rubinov, Fundamentals of Nonsmooth Analysis and Quasi-Differential Calculus (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  25. J. M. Borwein and S. P. Fitzpatrick, “Existence of nearest points in Banach spaces,” Can. J. Math. 61, 702–720 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  26. S. I. Dudov, “Subdifferentiability and superdifferentiability of distance function,” Math. Notes 61 (4), 440–450 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  27. F. P. Vasil’ev, Optimization Methods (Mosk. Tsentr Neprer. Mat. Obrazovan., Moscow, 2011) [in Russian].

    Google Scholar 

  28. E. S. Polovinkin and M. V. Balashov, Elements of Convex and Strongly Convex Analysis (Fizmatlit, Moscow, 2004) [in Russian].

    MATH  Google Scholar 

  29. J.-P. Vial, “Strong and weak convexity of sets and functions,” Math. Ops. Res. 8 (2), 231–259 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  30. G. E. Ivanov, Weakly Convex Sets and Functions (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  31. M. A. Osiptsev and S. I. Dudov, “On least-volume spherical shell containing the boundary of a convex body,” in Collected Scientific Works on Mathematics and Mechanics (Saratov. Univ., Saratov, 2013), Vol. 15, pp. 59–61 [in Russian].

    Google Scholar 

  32. S. I. Dudov and M. A. Osiptsev, “Uniform estimation of a convex body by a fixed-radius ball,” J. Optim. Theory Appl. 171 (2), 465–480 (2016).

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the reviewer for helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. I. Dudov or M. A. Osiptsev.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudov, S.I., Osiptsev, M.A. Spherical Shell of the Boundary of a Compact Set with a Minimum Cross-Sectional Area Formed by a Two-Dimensional Plane. Comput. Math. and Math. Phys. 59, 160–173 (2019). https://doi.org/10.1134/S096554251901007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554251901007X

Keywords:

Navigation