Skip to main content
Log in

Iterative algorithm for minimizing a convex function at the intersection of a spherical surface and a convex compact set

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A numerical algorithm for minimizing a convex function on the set-theoretic intersection of a spherical surface and a convex compact set is proposed. The idea behind the algorithm is to reduce the original minimization problem to a sequence of convex programming problems. Necessary extremum conditions are examined, and the convergence of the algorithm is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. F. Minnibaev and Yu. A. Chernyaev, “Iterative algorithm for mathematical programming problems with preconvex constraints,” Comput. Math. Math. Phys. 50 (5), 792–794 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  2. Yu. A. Chernyaev, “Numerical algorithm for solving mathematical programming problems with a smooth surface as a constraint,” Comput. Math. Math. Phys. 56 (3), 376–381 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  3. Yu. A. Chernyaev, “Two methods for minimizing convex functions in a class of nonconvex sets,” Comput. Math. Math. Phys. 48 (10), 1768–1776 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  4. Yu. A. Chernyaev, “An iterative method for minimizing a convex nonsmooth function on a convex smooth surface,” Comput. Math. Math. Phys. 49 (4), 589–593 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  5. E. G. Gol’shtein and N. V. Tret’yakov, Augmented Lagrangians: Theory and Optimization Methods (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  6. A. I. Golikov and V. G. Zhadan, “Iterative methods for solving nonlinear programming problems, using modified Lagrange functions,” USSR Comput. Math. Math. Phys. 20 (4), 62–78 (1980).

    Article  MATH  Google Scholar 

  7. V. G. Zhadan, “Modified Lagrange functions in nonlinear programming,” USSR Comput. Math. Math. Phys. 22 (2), 43–57 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  8. B. N. Pshenichnyi and Yu. M. Danilin, Numerical Methods in Optimization Problems (Nauka, Moscow, 1975) [in Russian].

    MATH  Google Scholar 

  9. A. I. Golikov and V. G. Zhadan, “Two modifications of the linearization method in nonlinear programming,” USSR Comput. Math. Math. Phys. 23 (2), 36–44 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. S. Antipin, A. Nedić, and M. Jaćimović, “A three-step method of linearization for minimization problems,” Russ. Math. 38 (12), 1–5 (1994).

    MATH  Google Scholar 

  11. A. S. Antipin, A. Nedić, and M. Jaćimović, “A two-step linearization method for minimization problems,” Comput. Math. Math. Phys. 36 (4), 431–437 (1996).

    MathSciNet  Google Scholar 

  12. Yu. A. Chernyaev, “Convergence of the gradient projection method for a class of nonconvex mathematical programming problems,” Russ. Math. 49 (12), 71–74 (2005).

    MathSciNet  Google Scholar 

  13. Yu. A. Chernyaev, “An extension of the conditional gradient method to a class of nonconvex optimization problems,” Comput. Math. Math. Phys. 46 (4), 548–553 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  14. Yu. A. Chernyaev, “Generalization of Newton’s method to the class of nonconvex mathematical programming problems,” Russ. Math. 52 (1), 72–75 (2008).

    MathSciNet  MATH  Google Scholar 

  15. Yu. A. Chernyaev, “An extension of the gradient projection method and Newton’s method to extremum problems constrained by a smooth surface,” Comput. Math. Math. Phys. 55 (9), 1451–1460 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  16. F. P. Vasil’ev, Numerical Methods for Solving Extremum Problems (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  17. A. M. Dulliev and V. I. Zabotin, “Iteration algorithm for projecting a point on a nonconvex manifold in a normed linear space,” Comput. Math. Math. Phys. 44 (5), 781–784 (2004).

    MathSciNet  MATH  Google Scholar 

  18. V. I. Zabotin and N. K. Arutyunova, “Two algorithms for finding the projection of a point onto a nonconvex set in a normed space,” Vychisl. Mat. Mat. Fiz. 53 (3), 344–349 (2013).

    MATH  Google Scholar 

  19. N. K. Arutyunova, A. M. Dulliev, and V. I. Zabotin, “Algorithms for projecting a point onto a level surface of a continuous function on a compact set,” Comput. Math. Math. Phys. 54 (9), 1395–1401 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  20. P. J. Loran, Approximation and Optimization (Hermann, Paris, 1972; Mir, Moscow, 1975).

    Google Scholar 

  21. V. F. Dem’yanov and L. V. Vasil’ev, Nondifferential Optimization (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Chernyaev.

Additional information

Original Russian Text © Yu.A. Chernyaev, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 10, pp. 1631–1640.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyaev, Y.A. Iterative algorithm for minimizing a convex function at the intersection of a spherical surface and a convex compact set. Comput. Math. and Math. Phys. 57, 1607–1615 (2017). https://doi.org/10.1134/S0965542517100062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542517100062

Keywords

Navigation