Skip to main content
Log in

A Quasi-Gasdynamic Model for the Description of Magnetogasdynamic Phenomena

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A kinetic model based on the use of a single-particle distribution function is used to describe dissipative magnetogasdynamic phenomena. Along with the original quasi-gasdynamic model, a simplified version that is more convenient for numerical implementation is considered and justified. Numerical results for a number of problems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. Physically, this term appears due to smoothing the solution over the mean free path \(l\), which follows from the method of deriving the balance equation [7, 17, 18].

  2. Here, we do not consider cases where the QGD system yields results that are in better agreement with experimental data than the Navier–Stokes equations, for example, flows with moderate Knudsen numbers \(Kn \leqslant 0.1\) [7, 17, 2022]. In that case, the complete QGD system (3.14)–(3.19) has to be used.

REFERENCES

  1. V. E. Fortov, Physics of High Energy Densities (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  2. K. V. Brushlinskii, Mathematical and Computational Problems of Magnetic Gas Dynamics (Binom, Moscow, 2009) [in Russian].

    Google Scholar 

  3. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Chapman and Hall/CRC, London, 2001; Fizmatlit, Moscow, 2012).

  4. B. N. Chetverushkin, “Kinetic models for solving continuum mechanics problems on supercomputers,” Math. Models Comput. Simul. 7 (6), 531–539 (2015).

    Article  MathSciNet  Google Scholar 

  5. B. N. Chetverushkin, N. D’Ascenzo, and V. I. Saveliev, “Kinetically consistent magnetogasdynamics equations and their use in supercomputer computations,” Dokl. Math. 90 (1), 495–498 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  6. B. N. Chetverushkin, N. D’Ascenzo, S. Ishanov, and V. Saveliev, “Hyperbolic type explicit kinetic scheme of magneto gas dynamics for high performance computing systems,” Russ. J. Numer. Anal. Math. Model 30 (1), 27–36 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  7. B. N. Chetverushkin, Kinetic Schemes and Quasi-Gas Dynamic System of Equations (MAKS, Moscow, 2004; CIMNE, Barcelona, 2008).

  8. M. N. Kogan, Rarefied Gas Dynamics (Nauka, Moscow, 1967; Plenum, New York, 1969).

  9. C. Cercignani, Mathematical Methods in Kinetic Theory (Plenum, New York, 1969).

    Book  MATH  Google Scholar 

  10. B. N. Chetverushkin and V. I. Saveliev, Preprint No. 79, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2015).

  11. B. N. Chetverushkin and A. V. Gulin, “Explicit schemes and numerical simulation using ultrahigh-performance computer systems,” Dokl. Math. 86 (2), 681–683 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  12. N. D’Ascenzo, V. I. Saveliev, and B. N. Chetverushkin, “On an algorithm for solving parabolic and elliptic equations,” Comput. Math. Math. Phys. 55 (8), 1290–1297 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  13. B. N. Chetverushkin, N. D’Ascenzo, A. V. Saveliev, and V. I. Saveliev, “Simulation of astrophysical phenomena on the basis of high-performance computations,” Dokl. Math. 95 (1), 68–71 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. A. Zlotnik and B. N. Chetverushkin, “Entropy balance for the one-dimensional hyperbolic quasi-gasdynamic system of equations,” Dokl. Math. 95 (3), 276–281 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  15. B. N. Chetverushkin, N. D’Ascenzo, A. V. Saveliev, and V. I. Saveliev, “A kinetic model for magnetogasdynamics,” Math. Models Comput. Simul. 9 (5), 544–553 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. A. Zlotnik and B. N. Chetverushkin, “Parabolicity of the quasi-gasdynamic system of equations, its hyperbolic second-order modification, and the stability of small perturbations for them,” Comput. Math. Math. Phys. 48 (3), 420–446 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  17. B. N. Chetverushkin, “Resolution limits of continuous media models and their mathematical formulations,” Math. Models Comput. Simul. 5 (3), 266–279 (2013).

    Article  MathSciNet  Google Scholar 

  18. Yu. V. Sheretov, “Quasi-hydrodynamic equations as a model of heat-conducting viscous compressible flows,” Application of Functional Analysis in Approximation Theory (Tver. Gos. Univ., Tver, 1997), pp. 127–155 [in Russian].

    Google Scholar 

  19. H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1968).

    MATH  Google Scholar 

  20. A. V. Lukshin and L. B. Yarchuk, “A domain decomposition method for the Boltzmann equation,” Differ. Uravn. 34 (7), 958–964 (1998).

    MathSciNet  MATH  Google Scholar 

  21. B. V. Alexeev and V. V. Polev, “Calculation of the shock wave structure with the help of high-accuracy hydrodynamic equations,” Teplofiz. Vysok. Temp. 28 (3), 614–616 (1990).

    Google Scholar 

  22. T. G. Elizarova, Quasi-Gas Dynamic Equations (Springer, Dordrecht, 2009).

    Book  MATH  Google Scholar 

  23. U. Ghia, K. N. Ghia, and C. T. Shin, “High resolutions for incompressible flow using the Navier–Stokes equations and a multigrid method,” J. Comput. Phys. 48 (3), 387 (1982).

    Article  MATH  Google Scholar 

  24. S. A. Orszag and C.-M. Tang, “Small-scale structure of two-dimensional magnetohydrodynamic turbulence,” J. Fluid Mech. 90, 129–143 (1979).

    Article  Google Scholar 

  25. J. M. Stone, T. A. Gardiner, P. Teuben, J. F. Hawley, and J. B. Simon, “Athena: A new code for astrophysical MHD,” Astrophys. J. 178, Suppl., 137 (2008).

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, grant no. 14-11-00170.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. N. Chetverushkin, A. V. Saveliev or V. I. Saveliev.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetverushkin, B.N., Saveliev, A.V. & Saveliev, V.I. A Quasi-Gasdynamic Model for the Description of Magnetogasdynamic Phenomena. Comput. Math. and Math. Phys. 58, 1384–1394 (2018). https://doi.org/10.1134/S0965542518080055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542518080055

Keywords:

Navigation